Support

Support Options

Report a problem

 
You are here: Home Publications Datasets

Publications: Datasets

  1. 1 Mark (Mahoney, Berea College)

    2014-10-01 18:54:27 | Contributor(s): Mel Chua | doi:10.4231/R7FT8HZR

    The first narrative from Mark Mahoney of Berea College, collected on Feb. 21, 2014.
  2. 2011-2014 Indiana Interstate Congestion Summary

    2014-10-07 21:44:41 | Contributor(s): Stephen Remias, Teresa Morris, Darcy M. Bullock | doi:10.4231/R76D5QXB

    The video corresponds with the delay performance measure in the 2013–2014 Indiana Mobility Report.
  3. 2012 Latino Immigrant National Election Study

    2016-07-21 20:30:05 | Contributor(s): James A. McCann, Michael Jones-Correa | doi:10.4231/R7KS6PJK

    Original national survey of the foreign-born Latino population in the US.
  4. 220 Band AVIRIS Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3

    2015-09-30 14:08:40 | Contributor(s): Marion F. Baumgardner, Larry L. Biehl, David A. Landgrebe | doi:10.4231/R7RX991C

    This publication includes the AVIRIS hyperspectral image data for Indian Pine Test Site 3 along with the reference data for this site including observation notes and photos for the fields within the approximately 2 mile by 2 mile area.
  5. 28-digit values of the recursion coefficients relative to the Airy weight function w(x)= frac{2^{2/3}pi}{3^{5/6}Gamma(2/3)} *x^{-2/3}exp(-x)Ai((3x/2)^{2/3}) on [0,infty]

    2014-03-21 12:01:01 | Contributor(s): Walter Gautschi | doi:10.4231/R7QN64N5

    28-digit values of the recursion coefficients for orthogonal polynomials relative to the Airy weight function w(x)= frac{2^{2/3}pi}{3^{5/6}Gamma(2/3)} *x^{-2/3}exp(-x)Ai((3x/2)^{2/3}) on [0,infty]
  6. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac weight function

    2016-11-29 13:32:22 | Contributor(s): Walter Gautschi | doi:10.4231/R7HQ3WW3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=1
  7. 32-digit values of the first 100 recurrence coefficients for a Binet-like weight function

    2017-05-31 12:22:27 | Contributor(s): Walter Gautschi | doi:10.4231/R73B5X5B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1+exp(-abs(x))) on [-Inf,Inf]
  8. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters 1, 1/2, 1/2, -3/2

    2017-02-14 15:13:15 | Contributor(s): Walter Gautschi | doi:10.4231/R7W66HSK

    32-digit values of the first 100 recurrence coefficients for the weight function (inverse Gaussian distribution) w(x)=const*x^d*exp(-b/x^a-c*x^a) on [0,Inf], const=exp(1)/√(2*π), a=1, b=c=1/2, d=-3/2
  9. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters 2, 1, 1, 0

    2017-01-30 17:30:03 | Contributor(s): Walter Gautschi | doi:10.4231/R7F47M3H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^d*exp(-b/x^a-c*x^a) on [0,Inf], a=2, b=c=1, d=0
  10. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters a=1/3, b=c=1/2, d=-7/6

    2017-02-14 15:17:26 | Contributor(s): Walter Gautschi | doi:10.4231/R7RF5S1T

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=const*x^d*exp(-b/x^a-c*x^a), const=exp(1)/(3*√(2*pi)), a=1/3, b=c=1/2, d=-7/6
  11. 32-digit values of the first 100 recurrence coefficients for a Gaussian weight function with parameters 1/2 and -1

    2017-02-03 20:31:06 | Contributor(s): Walter Gautschi | doi:10.4231/R7D50JZ8

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-a(x-x0)^2) on [0,Inf], with a=1/2, x0=-1
  12. 32-digit values of the first 100 recurrence coefficients for a Gaussian weight function with parameters 1/2 and 1

    2017-02-03 20:28:33 | Contributor(s): Walter Gautschi | doi:10.4231/R7HX19PP

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-a(x-x0)^2) on [0,Inf], with a=1/2, x0=1
  13. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=2 multiplied by an exponential function with coefficient a=8

    2017-02-27 13:28:05 | Contributor(s): Walter Gautschi | doi:10.4231/R78913V2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=2, a=8
  14. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=4 multiplied by an exponential function with coefficient a=8

    2017-02-27 13:29:22 | Contributor(s): Walter Gautschi | doi:10.4231/R74J0C39

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=4, a=8
  15. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=8 multiplied by an exponential function with coefficient a=-8

    2017-02-27 13:31:33 | Contributor(s): Walter Gautschi | doi:10.4231/R7W093W1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=8, a=-8
  16. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=8 multiplied by an exponential function with coefficient a=8

    2017-02-27 13:30:21 | Contributor(s): Walter Gautschi | doi:10.4231/R70R9MC1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=8, a=8
  17. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters -1/2, 3/2 and exponent -3/4

    2017-03-10 15:52:03 | Contributor(s): Walter Gautschi | doi:10.4231/R7833Q1F

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=-1/2, b=3/2, c=-3/4
  18. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters -1/2, 3/2 and exponent 1

    2017-03-10 15:51:01 | Contributor(s): Walter Gautschi | doi:10.4231/R7CV4FQ0

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=-1/2, b=3/2, c=1
  19. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters 3/2, -1/2 and exponent -3/4

    2017-03-10 15:49:47 | Contributor(s): Walter Gautschi | doi:10.4231/R7NC5Z6H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=3/2, b=-1/2, c=-3/4
  20. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters 3/2, -1/2 and exponent 1

    2017-03-10 15:50:23 | Contributor(s): Walter Gautschi | doi:10.4231/R7HM56FQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=3/2, b=-1/2, c=1