Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent 0

    2016-11-29 15:07:32 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7ZP443R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=0

    https://purr.purdue.edu/publications/1490

  2. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 4

    2016-11-29 13:20:40 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7765C8X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=4

    https://purr.purdue.edu/publications/1480

  3. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 3

    2016-11-29 13:20:09 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7BZ640B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=3

    https://purr.purdue.edu/publications/1479

  4. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 2

    2016-11-30 16:49:07 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7GQ6VQ8

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=2

    https://purr.purdue.edu/publications/1478

  5. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein weight function

    2016-11-30 16:48:34 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7MG7MGF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=1

    https://purr.purdue.edu/publications/1476

  6. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 8

    2016-11-29 13:23:13 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7R78C5Q

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [-Inf,Inf], mu=0, nu=8

    https://purr.purdue.edu/publications/1489

  7. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 4

    2016-11-29 13:21:13 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7VX0DHD

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [-Inf,Inf], mu=0, nu=4

    https://purr.purdue.edu/publications/1487

  8. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 10

    2016-11-29 13:24:20 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R74F1NPK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [-Inf,Inf], mu=0, nu=10

    https://purr.purdue.edu/publications/1486

  9. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac weight function

    2016-11-29 13:32:22 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7HQ3WW3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=1

    https://purr.purdue.edu/publications/1481

  10. POEXPINT: Polynomials orthogonal with respect to the exponential integral

    2014-04-28 14:27:31 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7X34VD9

    Matlab scripts for computing orthogonal polynomials whose weight function involves an exponential integral

    https://purr.purdue.edu/publications/1587

  11. NEUTRAL: Neutralizing nearby singularities in numerical quadrature

    2014-04-23 08:27:11 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R75H7D6P

    Matlab routines for neutralizing nearby singularities in numerical quadrature

    https://purr.purdue.edu/publications/1579

  12. RMOP: Repeated modifications of orthogonal polynomials

    2014-04-23 08:25:49 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7F18WNB

    Matlab routines and data sets that compute repeated modifications of orthogonal polynomials

    https://purr.purdue.edu/publications/1577

  13. SRJAC: Sub-range Jacobi polynomials

    2014-04-23 08:24:06 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7JS9NCR

    Matlab routines for computing sub-range Jacobi polynomials within the sub interval of [-1, 1]

    https://purr.purdue.edu/publications/1576

  14. GQLOG: Matlab routines for computing Gauss Quadrature rules with logarithmic weight functions

    2014-04-23 08:28:47 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R72R3PMB

    Matlab routines for computing Gauss Quadrature rules with logarithmic weight functions

    https://purr.purdue.edu/publications/1571

  15. OWF: Matlab programs for computing orthogonal polynomials with respect to densely oscillating and exponentially decaying weight functions

    2014-04-23 08:26:04 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7NK3BZ7

    Software (in Matlab) is developed for computing variable-precision recurrence coefficients for orthogonal polynomials with respect to densely oscillating and exponentially decaying weight functions

    https://purr.purdue.edu/publications/1562

  16. NUMINT: Numerical Integration over the square

    2014-04-23 08:26:33 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7PK0D31

    Matlab routines for computing numerical integration over the square

    https://purr.purdue.edu/publications/1575

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries and the Office of the Executive Vice President for Research and Partnerships, with support from additional campus partners.
In accordance with Purdue policies, all persons have equal access to Purdue University’s educational programs, services and activities, without regard to race, religion, color, sex, age, national origin or ancestry, genetic information, marital status, parental status, sexual orientation, gender identity and expression, disability or status as a veteran. See Purdue’s Nondiscrimination Policy Statement. If you have any questions or concerns regarding these policies, please contact the Office of the Vice President for Ethics and Compliance at vpec@purdue.edu or 765-494-5830.