Datasets: All

  1. Meixner orthogonal polynomials with parameters b and c

    2017-01-30 15:49:39 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79C6VCS

    Matlab routine for the first N recurrence coefficients of Meixner orthogonal polynomials with parameters b and c

    https://purr.purdue.edu/publications/2370

  2. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters 2, 1, 1, 0

    2017-01-30 17:30:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7F47M3H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^d*exp(-b/x^a-c*x^a) on [0,Inf], a=2, b=c=1, d=0

    https://purr.purdue.edu/publications/2374

  3. Logistic orthogonal polynomials

    2017-01-30 17:33:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JW8BVZ

    Matlab routine for the first N recurrence coefficients of logistic orthogonal polynomials

    https://purr.purdue.edu/publications/2367

  4. 32-digit values of the first 100 recurrence coefficients, obtained by discretization, for a radiative transfer weight function with parameter c=2/3

    2017-01-13 14:07:19 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CF9N35

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=2/3

    https://purr.purdue.edu/publications/2316

  5. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac-type weight function with exponent r=3

    2017-01-13 14:06:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7VH5KT8

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=3

    https://purr.purdue.edu/publications/2319

  6. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.02

    2017-01-13 14:05:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7J38QH3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.02

    https://purr.purdue.edu/publications/2344

  7. 32-digit values of the first 100 recurrence coefficients for the midpoint weight function

    2017-01-20 14:01:08 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z31WN1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|/(exp(2*π*|x|)+1) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2362

  8. Abel polynomials

    2017-01-20 14:07:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72V2D3Z

    Matlab routine for the first N recurrence coefficients of Abel polynomials

    https://purr.purdue.edu/publications/2359

  9. Lindeloef polynomials

    2017-01-20 14:03:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76M34ST

    Matlab routine for the first N recurrence coefficients of Lindeloef polynomials

    https://purr.purdue.edu/publications/2360

  10. 32-digit values of the first 100 recurrence coefficients for the Plana weight function

    2017-01-20 13:59:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BC3WH5

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|/(exp(2*π*|x|)-1) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2361

  11. 32-digit values of the first 100 recurrence coefficients for the Morse weight function

    2017-01-13 14:04:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7G44N8B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-5*x+6*(exp(-x)-1)] on [0,Inf]

    https://purr.purdue.edu/publications/2347

  12. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c = -1, with exponent 1/2

    2017-01-13 14:04:16 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KW5D16

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = 1/4

    https://purr.purdue.edu/publications/2357

  13. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c=-1, with exponent -1/2

    2017-01-13 14:03:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QN64Q2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = -1/4

    https://purr.purdue.edu/publications/2356

  14. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c = -1, with exponent 0

    2017-01-13 14:02:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V9862X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = 0

    https://purr.purdue.edu/publications/2355

  15. 32-digit values of the first 100 recurrence coefficients for the upper subrange Hermite weight function on [c,Inf], c=-√(1/2)

    2017-01-13 14:01:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7028PHC

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x^2) on [c,Inf], c = -√(1/2)

    https://purr.purdue.edu/publications/2358

  16. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=1

    2017-01-13 13:55:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73T9F6B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=1

    https://purr.purdue.edu/publications/2342

  17. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.005

    2017-01-13 13:53:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74T6GBQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.005

    https://purr.purdue.edu/publications/2346

  18. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.001

    2017-01-13 13:51:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78K772F

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.001

    https://purr.purdue.edu/publications/2345

  19. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.1

    2017-01-13 13:50:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DB7ZTT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.1

    https://purr.purdue.edu/publications/2343

  20. Meixner-Pollaczek polynomials

    2016-12-15 20:06:16 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R75T3HG3

    Matlab routine for the first N recurrence coefficients of Meixner-Pollaczek polynomials

    https://purr.purdue.edu/publications/2334

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries and the Office of the Executive Vice President for Research and Partnerships, with support from additional campus partners.