## Datasets: All

1. 32-digit values of the first 100 recurrence coefficients for lower subrange Jacobi polynomials

2017-01-10 20:00:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7M906MW

32-digit values of the first 100 recurrence coefficients for the weight function w(x ) = (1-x)^a*(1+x)^b on [-1,c], c = 0, a = -1/2, b = 1/2

https://purr.purdue.edu/publications/2254

2. 32-digit values of the first 100 recurrence coefficients for symmetric subrange Jacobi polynomials

2017-01-10 19:59:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7R20ZB7

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*(1+x)^b on [-c,c], c=1/2, a=-1/2, b=1/2

https://purr.purdue.edu/publications/2251

3. 32-digit values of the first 100 recurrence coefficients for upper subrange Jacobi polynomials

2016-11-02 18:24:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7VT1Q2N

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*(1+x)^b on [c,1], c=0, a=-1/2, b=1/2

https://purr.purdue.edu/publications/2255

4. 32-digit values of the first 100 recurrence coefficients for the 10th-order cardinal B-spline weight function

2016-11-02 17:47:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70K26JX

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=phi_m(x) on [0,m], m=10

https://purr.purdue.edu/publications/2250

5. 32-digit values of the first 100 recurrence coefficients for the second-order cardinal B-spline weight function obtained by discretization

2016-12-01 15:47:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74B2Z9Q

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=phi_m(x) on [0,m], m=2

https://purr.purdue.edu/publications/2249

6. OPCBSPL: Orthogonal polynomials relative to cardinal B-spline weight functions

2016-10-28 13:32:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NG4NKC

A stable and efficient discretization procedure is developed to compute recurrence coefficients for orthogonal polynomials whose weight function is a polynomial cardinal B-spline of order greater than, or equal to, one.

https://purr.purdue.edu/publications/2025

7. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-x^2/2)*(1-x^2)]^(-1/2) on [-1,1]

2016-11-22 16:59:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HH6H1D

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=1/2

https://purr.purdue.edu/publications/2248

8. 32-digit values of the first 100 recurrence coefficients for the reciprocal gamma weight function

2016-11-23 16:40:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7S180GF

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=1/gamma(x) on [0,Inf]

https://purr.purdue.edu/publications/2246

9. 32-digit values of the first 100 recurrence coefficients for the finite-range exponential integral weight function on [0,1]

2016-10-26 14:04:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79021RG

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=E_nu(x) on (0,c], nu=1, c=1

https://purr.purdue.edu/publications/2242

10. 32-digit values of the first 100 recurrence coefficients for the finite-range exponential integral weight function on [0,16]

2016-10-26 13:58:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7WS8R7X

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=E_nu(x) on (0,c], nu=1, c=16

https://purr.purdue.edu/publications/2244

11. 32-digit values of the first 100 recurrence coefficients for the coerror weight function

2016-10-26 13:54:02 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R71J97Q6

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=erfc(x) on [0,Inf]

https://purr.purdue.edu/publications/2245

12. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

2016-11-30 16:51:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JH3J5S

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

https://purr.purdue.edu/publications/2240

13. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

2016-11-22 16:58:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7T151N8

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=0

https://purr.purdue.edu/publications/2238

14. 32-digits values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*[log(1/x)]^2 on [0,1]

2016-10-21 13:28:16 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XS5SC9

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^2 on [0,1], a=1/2

https://purr.purdue.edu/publications/2237

15. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^2 on [0,1]

2016-10-21 13:28:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72J68T4

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^2 on [0,1], a=-1/2

https://purr.purdue.edu/publications/2236

16. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents 1/2 times a logarithmic factor

2016-10-21 13:06:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79Z92VJ

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=1/2

https://purr.purdue.edu/publications/2234

17. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent 1/2

2016-11-29 15:04:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KH0K95

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=1/4

https://purr.purdue.edu/publications/2232

18. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent -1/2

2016-11-29 15:05:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q81B2B

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=-1/4

https://purr.purdue.edu/publications/2231

19. 32-digit values of the first 100 recurrence coefficients for an Airy weight function

2016-10-19 14:36:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V122R6

32-digit values of the first 100 recurrence coefficients for the (normalized) weight function w(x)=c*x^(-5/6)e^(-x)Ai((3x/2)^(2/3)) on [0,Inf], c=2^(-1/6)*3^(1/6)/pi^(1/2), where Ai is the Airy function

https://purr.purdue.edu/publications/2031

20. RMOP: Repeated modifications of orthogonal polynomials

2014-04-23 08:25:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7F18WNB

Matlab routines and data sets that compute repeated modifications of orthogonal polynomials

https://purr.purdue.edu/publications/1577

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).