Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-x^2/2)*(1-x^2)]^(-1/2) on [-1,1]

    2016-11-22 16:59:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HH6H1D

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=1/2

    https://purr.purdue.edu/publications/2248

  2. 32-digit values of the first 100 recurrence coefficients for the reciprocal gamma weight function

    2016-11-23 16:40:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7S180GF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=1/gamma(x) on [0,Inf]

    https://purr.purdue.edu/publications/2246

  3. 32-digit values of the first 100 recurrence coefficients for the finite-range exponential integral weight function on [0,1]

    2016-10-26 14:04:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79021RG

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=E_nu(x) on (0,c], nu=1, c=1

    https://purr.purdue.edu/publications/2242

  4. 32-digit values of the first 100 recurrence coefficients for the finite-range exponential integral weight function on [0,16]

    2016-10-26 13:58:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7WS8R7X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=E_nu(x) on (0,c], nu=1, c=16

    https://purr.purdue.edu/publications/2244

  5. 32-digit values of the first 100 recurrence coefficients for the coerror weight function

    2016-10-26 13:54:02 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R71J97Q6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=erfc(x) on [0,Inf]

    https://purr.purdue.edu/publications/2245

  6. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2016-11-30 16:51:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JH3J5S

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

    https://purr.purdue.edu/publications/2240

  7. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2016-11-22 16:58:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7T151N8

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2238

  8. 32-digits values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*[log(1/x)]^2 on [0,1]

    2016-10-21 13:28:16 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XS5SC9

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^2 on [0,1], a=1/2

    https://purr.purdue.edu/publications/2237

  9. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^2 on [0,1]

    2016-10-21 13:28:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72J68T4

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^2 on [0,1], a=-1/2

    https://purr.purdue.edu/publications/2236

  10. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents 1/2 times a logarithmic factor

    2016-10-21 13:06:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79Z92VJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=1/2

    https://purr.purdue.edu/publications/2234

  11. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents -1/2 times a logarithmic factor

    2016-10-21 13:05:28 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FQ9TKW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=-1/2

    https://purr.purdue.edu/publications/2233

  12. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent 1/2

    2016-11-29 15:04:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KH0K95

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=1/4

    https://purr.purdue.edu/publications/2232

  13. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent -1/2

    2016-11-29 15:05:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q81B2B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=-1/4

    https://purr.purdue.edu/publications/2231

  14. 32-digit values of the first 100 recurrence coefficients for an Airy weight function

    2016-10-19 14:36:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V122R6

    32-digit values of the first 100 recurrence coefficients for the (normalized) weight function w(x)=c*x^(-5/6)e^(-x)Ai((3x/2)^(2/3)) on [0,Inf], c=2^(-1/6)*3^(1/6)/pi^(1/2), where Ai is the Airy function

    https://purr.purdue.edu/publications/2031

  15. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent 0

    2016-11-29 15:07:32 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZP443R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=0

    https://purr.purdue.edu/publications/1490

  16. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 4

    2016-11-29 13:20:40 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7765C8X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=4

    https://purr.purdue.edu/publications/1480

  17. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 3

    2016-11-29 13:20:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BZ640B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=3

    https://purr.purdue.edu/publications/1479

  18. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 2

    2016-11-30 16:49:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7GQ6VQ8

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=2

    https://purr.purdue.edu/publications/1478

  19. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein weight function

    2016-11-30 16:48:34 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7MG7MGF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=1

    https://purr.purdue.edu/publications/1476

  20. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 8

    2016-11-29 13:23:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7R78C5Q

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [-Inf,Inf], mu=0, nu=8

    https://purr.purdue.edu/publications/1489

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries and the Office of the Executive Vice President for Research and Partnerships, with support from additional campus partners.