Tags: Walter Gautschi Archives

All Categories (81-100 of 228)

  1. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=1

    2017-01-09 19:21:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73T9F6B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=1

    https://purr.purdue.edu/publications/2342

  2. 32-digit values of the first 100 recurrence coefficients for the half-range Binet weight function

    2017-05-18 13:57:34 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DN4331

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2538

  3. 32-digit values of the first 100 recurrence coefficients for the half-range Binet weight function

    2017-07-26 12:52:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DN4331

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2538

  4. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 10

    2017-10-13 14:56:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72N50FJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=10

    https://purr.purdue.edu/publications/2846

  5. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 6

    2017-10-13 14:42:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7B56GW6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=6

    https://purr.purdue.edu/publications/2844

  6. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 8

    2017-10-13 14:54:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76D5R5W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=8

    https://purr.purdue.edu/publications/2845

  7. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponents mu=0, nu=4

    2016-12-07 19:47:34 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7416V2R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=4

    https://purr.purdue.edu/publications/2321

  8. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponents mu=0, nu=3

    2017-02-16 14:05:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7D21VMV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^μ*exp(-x^ν) on [0,Inf], μ=0, ν=3

    https://purr.purdue.edu/publications/2410

  9. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Binet weight function with parameter 1/2

    2017-10-12 12:56:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QC01NW

    32-digit values of the first 100 recurrence coefficients for the half-range generalized Binet weight function w(x)=-log(1-a*exp(-x)) on [0,Inf], a = 1/2

    https://purr.purdue.edu/publications/2840

  10. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent -1/2

    2016-10-19 14:03:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q81B2B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=-1/4

    https://purr.purdue.edu/publications/2231

  11. 32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    2016-10-19 13:22:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7X63JTM

    32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    https://purr.purdue.edu/publications/1490

  12. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent 1/2

    2016-10-19 14:08:46 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KH0K95

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=1/4

    https://purr.purdue.edu/publications/2232

  13. 32-digit values of the first 100 recurrence coefficients for the half-range squared Binet weight function

    2017-10-12 12:59:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KK98Z2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2841

  14. 32-digit values of the first 100 recurrence coefficients for the half-range squared generalized Binet weight function with parameter 1/2

    2017-10-12 13:00:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FT8J7R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-a*exp(-x)) on [0,Inf], a = 1/2

    https://purr.purdue.edu/publications/2842

  15. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents -1/2 times a logarithmic factor

    2016-10-19 16:03:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FQ9TKW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=-1/2

    https://purr.purdue.edu/publications/2233

  16. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents 1/2 times a logarithmic factor

    2016-10-19 18:09:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79Z92VJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=1/2

    https://purr.purdue.edu/publications/2234

  17. 32-digit values of the first 100 recurrence coefficients for a lower subrange Binet weight function

    2017-10-25 16:20:45 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CN71XS

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,1]

    https://purr.purdue.edu/publications/2537

  18. 32-digit values of the first 100 recurrence coefficients for a lower subrange Binet weight function

    2018-01-09 13:48:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CN71XS

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,1]

    https://purr.purdue.edu/publications/2537

  19. 32-digit values of the first 100 recurrence coefficients for the lower symmetric subrange Binet weight function on [-c,c], c=1

    2017-10-18 20:08:21 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7862DNF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-c,c], c=1

    https://purr.purdue.edu/publications/2847

  20. 32-digit values of the first 100 recurrence coefficients for the lower symmetric subrange Binet weight function on [-c,c], c=1

    2018-01-09 14:00:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7862DNF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-c,c], c=1

    https://purr.purdue.edu/publications/2847

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).