Tags: Walter Gautschi Archives

All Categories (61-80 of 228)

  1. 32-digit values of the first 100 recurrence coefficients relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^2 computed by the SOPQ routine sr_boseeinstein(100,2,32)

    2016-10-13 19:21:14 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R77H1GGF

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^2 computed by the SOPQ routine sr_boseeinstein(100,2,32)

    https://purr.purdue.edu/publications/1478

  2. 32-digit values of the first 100 recurrence coefficients using the Bose-Einstein weight function: w(x)=[x/(e^x-1)]^4 computed by the SOPQ routine sr_boseeinstein(100,4,32)

    2016-10-17 13:19:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7000013

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials using the Bose-Einstein weight function: w(x)=[x/(e^x-1)]^4 computed by the SOPQ routine sr_boseeinstein(100,4,32)

    https://purr.purdue.edu/publications/1480

  3. 32-digit values of the first 100 recurrence coefficients for the coerror weight function

    2016-10-25 17:52:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R71J97Q6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=erfc(x) on [0,Inf]

    https://purr.purdue.edu/publications/2245

  4. 32-digit values of the first 100 recurrence coefficients for the exponential integral weight function E_1 on [0,Inf]

    2016-10-26 13:55:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DR2SF2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=E_nu(x) on (0,Inf], nu=1

    https://purr.purdue.edu/publications/2241

  5. 32-digit values of the first 100 recurrence coefficients for the exponential integral weight function E_1 on [0,Inf]

    2017-03-17 13:55:39 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DR2SF2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=E_nu(x) on (0,Inf], nu=1

    https://purr.purdue.edu/publications/2241

  6. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac-type weight function with exponent r=2

    2016-12-07 19:46:05 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R77S7KR9

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=2

    https://purr.purdue.edu/publications/2318

  7. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac-type weight function with exponent r=3

    2017-01-13 13:59:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7VH5KT8

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=3

    https://purr.purdue.edu/publications/2319

  8. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac-type weight function with exponent r=4

    2016-12-07 19:49:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R708639Z

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=4

    https://purr.purdue.edu/publications/2320

  9. 32-digit values of the first 100 recurrence coefficients for the finite-range exponential integral weight function on [0,16]

    2016-10-25 18:11:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7WS8R7X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=E_nu(x) on (0,c], nu=1, c=16

    https://purr.purdue.edu/publications/2244

  10. 32-digit values of the first 100 recurrence coefficients for the finite-range exponential integral weight function on [0,1]

    2016-10-26 14:03:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79021RG

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=E_nu(x) on (0,c], nu=1, c=1

    https://purr.purdue.edu/publications/2242

  11. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^{10}) computed on R by the SOPQ routine sr_freud(100,0,10,32)

    2016-10-13 14:51:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7F769GC

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^{10}) computed on R by the SOPQ routine sr_freud(100,0,10,32)

    https://purr.purdue.edu/publications/1486

  12. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 3

    2017-02-16 14:02:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HT2M9T

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^μ*exp(-|x|^ν) on [-Inf,Inf], μ=0, ν=3

    https://purr.purdue.edu/publications/2409

  13. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^4) computed on R by the SOPQ routine sr_freud(100,0,4,32)

    2016-10-13 15:22:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PN93HS

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^4) computed on R by the SOPQ routine sr_freud(100,0,4,32)

    https://purr.purdue.edu/publications/1487

  14. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^6) computed on R by the SOPQ routine sr_freud(100,0,6,32)

    2016-10-12 17:23:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z60KZ0

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^6) computed on R by the SOPQ routine sr_freud(100,0,6,32)

    https://purr.purdue.edu/publications/1488

  15. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^8) computed on R by the SOPQ routine sr_freud(100,0,8,32)

    2016-10-13 15:36:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TD9V74

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^8) computed on R by the SOPQ routine sr_freud(100,0,8,32)

    https://purr.purdue.edu/publications/1489

  16. 32-digit values of the first 100 recurrence coefficients for the generalized Binet weight function with parameter 1/2

    2017-10-12 12:45:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZW1J3N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-a*exp(-|x|)) on [-Inf,Inf], a = 1/2

    https://purr.purdue.edu/publications/2838

  17. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.001

    2017-01-03 15:56:02 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78K772F

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.001

    https://purr.purdue.edu/publications/2345

  18. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.005

    2017-01-03 15:57:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74T6GBQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.005

    https://purr.purdue.edu/publications/2346

  19. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.02

    2017-01-13 13:59:17 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7J38QH3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.02

    https://purr.purdue.edu/publications/2344

  20. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.1

    2017-01-03 15:54:45 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DB7ZTT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.1

    https://purr.purdue.edu/publications/2343

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).