Tags: Walter Gautschi Archives

All Categories (101-120 of 228)

  1. 32-digit values of the first 100 recurrence coefficients for the midpoint weight function

    2017-01-12 19:20:24 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z31WN1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|/(exp(2*π*|x|)+1) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2362

  2. 32-digit values of the first 100 recurrence coefficients for the Morse weight function

    2017-01-10 20:36:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7G44N8B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-5*x+6*(exp(-x)-1)] on [0,Inf]

    https://purr.purdue.edu/publications/2347

  3. 32-digit values of the first 100 recurrence coefficients for the Plana weight function

    2017-01-12 16:54:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BC3WH5

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|/(exp(2*π*|x|)-1) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2361

  4. 32-digit values of the first 100 recurrence coefficients for the reciprocal gamma weight function

    2016-10-27 13:48:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7S180GF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=1/gamma(x) on [0,Inf]

    https://purr.purdue.edu/publications/2246

  5. 32-digit values of the first 100 recurrence coefficients for the Schroedinger weight function with exponent mu=5

    2016-12-08 17:37:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QR4V3Z

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^4/16) on [0,Inf], mu=5

    https://purr.purdue.edu/publications/2322

  6. 32-digit values of the first 100 recurrence coefficients for the second-order cardinal B-spline weight function obtained by discretization

    2016-11-02 14:11:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74B2Z9Q

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=phi_m(x) on [0,m], m=2

    https://purr.purdue.edu/publications/2249

  7. 32-digit values of the first 100 recurrence coefficients for the second-order cardinal B-spline weight function obtained from moments

    2016-12-01 15:19:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XG9P4B

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=phi_m(x) on [0,m], m=2

    https://purr.purdue.edu/publications/2303

  8. 32-digit values of the first 100 recurrence coefficients for the square Binet weight function

    2017-07-26 12:44:46 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KW5D2N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1-exp(-|x|))]^2 on [-Inf, Inf]

    https://purr.purdue.edu/publications/2593

  9. 32-digit values of the first 100 recurrence coefficients for the squared generalized Binet weight function with parameter 1/2

    2017-10-12 12:47:21 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V40SC7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-a*exp(-|x|)) on [-Inf,Inf], a = 1/2

    https://purr.purdue.edu/publications/2839

  10. 32-digit values of the first 100 recurrence coefficients for the symmetric Laguerre weight function

    2017-02-07 20:55:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QF8QVK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-|x|) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2398

  11. 32-digit values of the first 100 recurrence coefficients relative to the Theodorus weight function w(x)=x^{1/2}/(e^x-1) on R_{+} computed by the routine sr_theodorus(100,32)

    2016-10-12 13:01:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R71Z4290

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Theodorus weight function w(x)=x^{1/2}/(e^x-1) on R_{+} computed by the routine sr_theodorus(100,32)

    https://purr.purdue.edu/publications/1472

  12. 32-digit values of the first 100 recurrence coefficients for an upper subrange Binet weight function

    2017-10-18 13:12:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TTZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [1,Inf]

    https://purr.purdue.edu/publications/2531

  13. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c = -1, with exponent 0

    2017-01-10 18:28:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V9862X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = 0

    https://purr.purdue.edu/publications/2355

  14. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c = -1, with exponent 1/2

    2017-01-10 20:34:24 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KW5D16

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = 1/4

    https://purr.purdue.edu/publications/2357

  15. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c=-1, with exponent -1/2

    2017-01-10 18:41:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QN64Q2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = -1/4

    https://purr.purdue.edu/publications/2356

  16. 32-digit values of the first 100 recurrence coefficients for the upper subrange Hermite weight function on [c,Inf], c=-√(1/2)

    2017-01-10 14:59:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7028PHC

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x^2) on [c,Inf], c = -√(1/2)

    https://purr.purdue.edu/publications/2358

  17. 32-digit values of the first 100 recurrence coefficients for the upper subrange Hermite weight function on [c,Inf], c=√1/2

    2017-01-24 16:31:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NP22FV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x^2) on [c,Inf], c=√1/2

    https://purr.purdue.edu/publications/2376

  18. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/logarithmic singularity with exponent a=1/2 and power b=3

    2016-12-06 21:38:10 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7H70CSK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=1/2, b=3

    https://purr.purdue.edu/publications/2314

  19. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=-1/2 and power b=1

    2017-03-17 16:30:19 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7P26W4C

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=1

    https://purr.purdue.edu/publications/2441

  20. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=1/2 and power b=1

    2017-03-17 18:14:32 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7RV0KQJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=1

    https://purr.purdue.edu/publications/2443

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).