Tags: Walter Gautschi Archives

All Categories (61-80 of 228)

  1. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters -1/2, 3/2 and exponent 1

    2017-03-01 14:53:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CV4FQ0

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=-1/2, b=3/2, c=1

    https://purr.purdue.edu/publications/2427

  2. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters 3/2, -1/2 and exponent 1

    2017-03-01 14:52:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HM56FQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=3/2, b=-1/2, c=1

    https://purr.purdue.edu/publications/2426

  3. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters 3/2, -1/2 and exponent -3/4

    2017-03-01 14:51:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NC5Z6H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=3/2, b=-1/2, c=-3/4

    https://purr.purdue.edu/publications/2429

  4. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=16/3

    2017-02-27 13:43:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PC30CQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=16/3

    https://purr.purdue.edu/publications/2421

  5. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=8/3

    2017-02-27 13:42:33 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7T43R2M

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=8/3

    https://purr.purdue.edu/publications/2420

  6. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=4/3

    2017-02-27 13:41:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XS5SDR

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=4/3

    https://purr.purdue.edu/publications/2418

  7. Generalized Gegenbauer polynomials

    2017-02-23 13:20:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73J39ZH

    Matlab routine for the first N recurrence coefficients of generalized Gegenbauer polynomials

    https://purr.purdue.edu/publications/2416

  8. The first 100 recurrence coefficients for cardinal Bspline weight functions of order m=[1:10 12 15 20]

    2017-02-17 13:54:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R77942P7

    The first 100 recurrence coefficients for the weight function w(x)=φ_m(x), m=1, 2, . . . , 10, 12, 15, 20

    https://purr.purdue.edu/publications/2415

  9. The first 100 recurrence coefficients for a Pollaczek-type weight function with parameters in the interval [1/10,10]

    2017-02-16 14:21:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73R0QV2

    The first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/10, 1/2, 1, 2, . . . , 10

    https://purr.purdue.edu/publications/2393

  10. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=8 multiplied by an exponential function with coefficient a=-8

    2017-02-16 14:09:37 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7W093W1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=8, a=-8

    https://purr.purdue.edu/publications/2414

  11. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=8 multiplied by an exponential function with coefficient a=8

    2017-02-16 14:08:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70R9MC1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=8, a=8

    https://purr.purdue.edu/publications/2413

  12. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=4 multiplied by an exponential function with coefficient a=8

    2017-02-16 14:07:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74J0C39

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=4, a=8

    https://purr.purdue.edu/publications/2412

  13. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=2 multiplied by an exponential function with coefficient a=8

    2017-02-16 14:05:16 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78913V2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=2, a=8

    https://purr.purdue.edu/publications/2411

  14. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponents mu=0, nu=3

    2017-02-16 14:05:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7D21VMV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^μ*exp(-x^ν) on [0,Inf], μ=0, ν=3

    https://purr.purdue.edu/publications/2410

  15. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 3

    2017-02-16 14:02:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HT2M9T

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^μ*exp(-|x|^ν) on [-Inf,Inf], μ=0, ν=3

    https://purr.purdue.edu/publications/2409

  16. 32-digit values of the first 100 recurrence coefficients for a half-range hyperexponential weight function

    2017-02-14 19:50:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JQ0Z1W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-exp(x)) on [0,Inf]

    https://purr.purdue.edu/publications/2399

  17. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 1/10

    2017-02-10 15:18:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z03656

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/10

    https://purr.purdue.edu/publications/2397

  18. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 1/2

    2017-02-10 15:18:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72R3PP7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/2

    https://purr.purdue.edu/publications/2396

  19. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 10

    2017-02-10 15:16:06 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76H4FFD

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=10

    https://purr.purdue.edu/publications/2395

  20. 32-digit values of the first 100 recurrence coefficients for a symmetric hyperexponential weight function

    2017-02-09 16:37:32 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KP804N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-exp(|x|)) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2400

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).