Tags: Walter Gautschi Archives

All Categories (221-228 of 228)

  1. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)

    2014-04-22 08:59:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70Z715M

    32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)

    https://purr.purdue.edu/publications/1491

  2. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,1/2,32)

    2014-04-22 08:54:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7RWJ

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,1/2,32)

    https://purr.purdue.edu/publications/1500

  3. 32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    2014-04-22 08:19:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7X63JTM

    32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    https://purr.purdue.edu/publications/1490

  4. 32-digit values of the first 100 recurrence coefficients relative to the Theodorus weight function w(x)=x^{1/2}/(e^x-1) on R_{+} computed by the routine sr_theodorus(100,32)

    2014-04-22 08:12:17 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R71Z4290

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Theodorus weight function w(x)=x^{1/2}/(e^x-1) on R_{+} computed by the routine sr_theodorus(100,32)

    https://purr.purdue.edu/publications/1472

  5. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^{10}) computed on R by the SOPQ routine sr_freud(100,0,10,32)

    2014-04-22 07:44:39 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7F769GC

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^{10}) computed on R by the SOPQ routine sr_freud(100,0,10,32)

    https://purr.purdue.edu/publications/1486

  6. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^4) computed on R by the SOPQ routine sr_freud(100,0,4,32)

    2014-04-22 07:30:30 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PN93HS

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^4) computed on R by the SOPQ routine sr_freud(100,0,4,32)

    https://purr.purdue.edu/publications/1487

  7. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^8) computed on R by the SOPQ routine sr_freud(100,0,8,32)

    2014-04-22 07:27:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TD9V74

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^8) computed on R by the SOPQ routine sr_freud(100,0,8,32)

    https://purr.purdue.edu/publications/1489

  8. 28-digit values of the recursion coefficients relative to the Airy weight function w(x)= frac{2^{2/3}pi}{3^{5/6}Gamma(2/3)} *x^{-2/3}exp(-x)Ai((3x/2)^{2/3}) on [0,infty]

    2014-03-21 11:53:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QN64N5

    28-digit values of the recursion coefficients for orthogonal polynomials relative to the Airy weight function w(x)= frac{2^{2/3}pi}{3^{5/6}Gamma(2/3)} *x^{-2/3}exp(-x)Ai((3x/2)^{2/3}) on [0,infty]

    https://purr.purdue.edu/publications/1474

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).