Tags: Walter Gautschi Archives

All Categories (181-200 of 228)

  1. 32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    2016-10-19 13:22:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7X63JTM

    32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    https://purr.purdue.edu/publications/1490

  2. 32-digit values of the first 100 recurrence coefficients using the Bose-Einstein weight function: w(x)=[x/(e^x-1)]^4 computed by the SOPQ routine sr_boseeinstein(100,4,32)

    2016-10-17 13:19:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7000013

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials using the Bose-Einstein weight function: w(x)=[x/(e^x-1)]^4 computed by the SOPQ routine sr_boseeinstein(100,4,32)

    https://purr.purdue.edu/publications/1480

  3. 32-digit values of the first 100 recurrence coefficients relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^3 computed by the SOPQ routine sr_boseeinstein(100,3,32)

    2016-10-17 13:17:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73R0QRQ

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^3 computed by the routine sr_boseeinstein(100,3,32)

    https://purr.purdue.edu/publications/1479

  4. 32-digit values of the first 100 recurrence coefficients relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^2 computed by the SOPQ routine sr_boseeinstein(100,2,32)

    2016-10-13 19:21:14 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R77H1GGF

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^2 computed by the SOPQ routine sr_boseeinstein(100,2,32)

    https://purr.purdue.edu/publications/1478

  5. 32-digit values of the first 100 recurrence coefficients relative to the Bose-Einstein weight function w(x)=x/(e^x-1) computed by the SOPQ routine sr_boseeinstein(100,1,32)

    2016-10-13 16:31:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7H12ZX3

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Bose-Einstein weight function w(x)=x/(e^x-1) computed by the SOPQ routine sr_boseeinstein(100,1,32)

    https://purr.purdue.edu/publications/1476

  6. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^8) computed on R by the SOPQ routine sr_freud(100,0,8,32)

    2016-10-13 15:36:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TD9V74

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^8) computed on R by the SOPQ routine sr_freud(100,0,8,32)

    https://purr.purdue.edu/publications/1489

  7. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^4) computed on R by the SOPQ routine sr_freud(100,0,4,32)

    2016-10-13 15:22:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PN93HS

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^4) computed on R by the SOPQ routine sr_freud(100,0,4,32)

    https://purr.purdue.edu/publications/1487

  8. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^{10}) computed on R by the SOPQ routine sr_freud(100,0,10,32)

    2016-10-13 14:51:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7F769GC

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^{10}) computed on R by the SOPQ routine sr_freud(100,0,10,32)

    https://purr.purdue.edu/publications/1486

  9. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^6) computed on R by the SOPQ routine sr_freud(100,0,6,32)

    2016-10-12 17:23:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z60KZ0

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^6) computed on R by the SOPQ routine sr_freud(100,0,6,32)

    https://purr.purdue.edu/publications/1488

  10. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,1/2,32)

    2016-10-12 13:51:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79G5JRN

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{-1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,1/2,32)

    https://purr.purdue.edu/publications/1494

  11. 32-digit values of the first 100 recurrence coefficients relative to the Theodorus weight function w(x)=x^{1/2}/(e^x-1) on R_{+} computed by the routine sr_theodorus(100,32)

    2016-10-12 13:01:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R71Z4290

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Theodorus weight function w(x)=x^{1/2}/(e^x-1) on R_{+} computed by the routine sr_theodorus(100,32)

    https://purr.purdue.edu/publications/1472

  12. 32-digit values of the first 100 recurrence coefficients relative to the Fermi-Dirac weight function w(x)=1/(e^x+1) computed by the SOPQ routine sr_fermidirac(100,1,32)

    2016-10-11 15:06:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7C82765

    32-digit values of the first 100 recurrence coefficients relative to the Fermi-Dirac weight function w(x)=1/(e^x+1) computed by the SOPQ routine sr_fermidirac(100,1,32)

    https://purr.purdue.edu/publications/1481

  13. Scripts for the Ismail-Letessier-Askey (ILA) monotonicity conjecture for zeros of ultraspherical polynomials

    2016-10-04 15:39:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78G8HNQ

    Dataset contains matlab scripts for a paper dealing with the ILA monotonicity property for zeros of ultraspherical polynomials.

    https://purr.purdue.edu/publications/2184

  14. Scripts for a discrete top-down Markov problem in approximation theory

    2016-07-19 15:33:05 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7RX0

    Matlab scripts for a discrete top-down Markov problem in approximation theory

    https://purr.purdue.edu/publications/2149

  15. INERFC: Evaluation of the Repeated Integrals of the Coerror Function by Half-Range Gauss-Hermite Quadrature

    2016-07-07 15:07:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SB43PZ

    INERFC: Evaluation of the Repeated Integrals of the Coerror Function by Half-Range Gauss-Hermite Quadrature

    https://purr.purdue.edu/publications/1653

  16. SOPQ: Symbolic OPQ

    2015-12-30 00:00:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZG6Q6T

    This includes symbolic versions of some of the more important OPQ routines.

    https://purr.purdue.edu/publications/1560

  17. POEXPINT: Polynomials orthogonal with respect to the exponential integral

    2014-04-28 13:01:06 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7X34VD9

    Matlab scripts for computing orthogonal polynomials whose weight function involves an exponential integral

    https://purr.purdue.edu/publications/1587

  18. 32-digit values of the first 100 recurrence coefficients relative to the Fermi-Dirac weight function w(x)=1/(e^x+1) computed by the SOPQ routine sr_fermidirac(100,1,32)

    2014-04-24 00:00:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7C82765

    32-digit values of the first 100 recurrence coefficients relative to the Fermi-Dirac weight function w(x)=1/(e^x+1) computed by the SOPQ routine sr_fermidirac(100,1,32)

    https://purr.purdue.edu/publications/1481

  19. CHA: Matlab programs for computing a challenging integral

    2014-04-22 16:52:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QJ7F7V

    Matlab and FORTRAN codes to evaluate a densely and wildly oscillatory integral that had been proposed as a computational problem in the SIAM 100-Digit Challenge.

    https://purr.purdue.edu/publications/1563

  20. MCD: Matlab programs for computing the Macdonald function for complex orders

    2014-04-22 16:50:55 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7B8562S

    A collection of FORTRAN and Matlab codes and their outputs to compute the Macdonald function for complex orders by numerical quadrature.

    https://purr.purdue.edu/publications/1561

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).