Tags: Walter Gautschi Archives

All Categories (121-140 of 228)

  1. 32-digit values of the first 100 recurrence coefficients, obtained from modified moments, for the Laguerre weight function multiplied by a logarithmically singular function

    2016-12-09 20:34:48 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7M043CX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2301

  2. 32-digit values of the first 100 recurrence coefficients for the Schroedinger weight function with exponent mu=5

    2016-12-08 17:37:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QR4V3Z

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^4/16) on [0,Inf], mu=5

    https://purr.purdue.edu/publications/2322

  3. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac-type weight function with exponent r=4

    2016-12-07 19:49:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R708639Z

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=4

    https://purr.purdue.edu/publications/2320

  4. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponents mu=0, nu=4

    2016-12-07 19:47:34 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7416V2R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=4

    https://purr.purdue.edu/publications/2321

  5. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac-type weight function with exponent r=2

    2016-12-07 19:46:05 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R77S7KR9

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=2

    https://purr.purdue.edu/publications/2318

  6. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/logarithmic singularity with exponent a=1/2 and power b=3

    2016-12-06 21:38:10 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7H70CSK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=1/2, b=3

    https://purr.purdue.edu/publications/2314

  7. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=2/3

    2016-12-06 14:55:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7N014H9

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=2/3

    https://purr.purdue.edu/publications/2315

  8. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

    2016-12-01 20:27:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78P5XHT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

    https://purr.purdue.edu/publications/2304

  9. 32-digit values of the first 100 recurrence coefficients for a square-root-logarithmic weight function

    2016-12-01 19:34:26 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NZ85NT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1/x)]^b on [0,1], b=1/2

    https://purr.purdue.edu/publications/2306

  10. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

    2016-12-01 15:42:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SQ8XDM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2302

  11. 32-digit values of the first 100 recurrence coefficients for the second-order cardinal B-spline weight function obtained from moments

    2016-12-01 15:19:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XG9P4B

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=phi_m(x) on [0,m], m=2

    https://purr.purdue.edu/publications/2303

  12. Gauss quadrature rules

    2016-11-30 17:28:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72805KQ

    Variable-precision Matlab routine for generating the nodes and weights of a Gaussian quadrature rule

    https://purr.purdue.edu/publications/2305

  13. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-.999*x^2)*(1-x^2)]^(-1/2) on [-1,1]

    2016-11-23 16:22:17 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7N877RQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=.999

    https://purr.purdue.edu/publications/2247

  14. 28-digit values of the recursion coefficients relative to the Bessel weight function w(x)=frac{sqrt{3}}{pi}K_{1/3}(x) on [0,infty]

    2016-11-23 16:16:14 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JW8BS2

    28-digit values of the recursion coefficients for orthogonal polynomials relative to the Bessel weight function w(x)=frac{sqrt{3}}{pi}K_{1/3}(x) on [0,infty]

    https://purr.purdue.edu/publications/1475

  15. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2016-11-22 17:01:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZMR

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2298

  16. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*log(1/x) on [0,1]

    2016-11-21 20:18:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BP00RH

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = -1/2, b = 1

    https://purr.purdue.edu/publications/2291

  17. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*log(1/x) on [0,1]

    2016-11-21 15:52:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FF3QBG

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = 1/2, b = 1

    https://purr.purdue.edu/publications/2290

  18. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(-1/2)*log(1/x) on [0,1]

    2016-11-21 15:48:55 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K64G26

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = -1/2

    https://purr.purdue.edu/publications/2294

  19. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(-1/2)*log(1/x) on [0,1]

    2016-11-21 15:43:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PZ56TN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = -1/2

    https://purr.purdue.edu/publications/2293

  20. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(1/2)*log(1/x) on [0,1]

    2016-11-21 15:40:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TQ5ZHJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 1/2

    https://purr.purdue.edu/publications/2292

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).