Tags: Walter Gautschi Archives

Resources (221-228 of 228)

  1. Scripts for a discrete top-down Markov problem in approximation theory

    2016-07-19 15:33:05 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7RX0

    Matlab scripts for a discrete top-down Markov problem in approximation theory

    https://purr.purdue.edu/publications/2149

  2. Scripts for the Ismail-Letessier-Askey (ILA) monotonicity conjecture for zeros of ultraspherical polynomials

    2016-10-04 15:39:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78G8HNQ

    Dataset contains matlab scripts for a paper dealing with the ILA monotonicity property for zeros of ultraspherical polynomials.

    https://purr.purdue.edu/publications/2184

  3. SOPQ: Symbolic OPQ

    2015-12-30 00:00:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZG6Q6T

    This includes symbolic versions of some of the more important OPQ routines.

    https://purr.purdue.edu/publications/1560

  4. Squared Abel polynomials

    2017-01-26 13:58:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7RZF

    Matlab routine for the first N recurrence coefficients of squared Abel polynomials

    https://purr.purdue.edu/publications/2377

  5. SRJAC: Sub-range Jacobi polynomials

    2014-04-22 16:40:02 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JS9NCR

    Matlab routines for computing sub-range Jacobi polynomials within the sub interval of [-1, 1]

    https://purr.purdue.edu/publications/1576

  6. Stieltjes-Wigert orthogonal polynomials with parameters σ and m

    2017-01-23 17:46:48 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SF2T6N

    Matlab routine for the first N recurrence coefficients of Stieltjes-Wigert orthogonal polynomials with parameters σ and m

    https://purr.purdue.edu/publications/2375

  7. The first 100 recurrence coefficients for a Pollaczek-type weight function with parameters in the interval [1/10,10]

    2017-02-16 14:21:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73R0QV2

    The first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/10, 1/2, 1, 2, . . . , 10

    https://purr.purdue.edu/publications/2393

  8. The first 100 recurrence coefficients for cardinal Bspline weight functions of order m=[1:10 12 15 20]

    2017-02-17 13:54:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R77942P7

    The first 100 recurrence coefficients for the weight function w(x)=φ_m(x), m=1, 2, . . . , 10, 12, 15, 20

    https://purr.purdue.edu/publications/2415

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).