## Tags: Walter Gautschi Archives

### Resources (121-140 of 228)

1. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*log(1/x) on [0,1]

2016-11-21 14:48:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7348HBP

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 0

https://purr.purdue.edu/publications/2296

2. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(-1/2)*log(1/x) on [0,1]

2016-11-21 15:48:55 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K64G26

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = -1/2

https://purr.purdue.edu/publications/2294

3. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(1/2)*log(1/x) on [0,1]

2016-11-21 15:40:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TQ5ZHJ

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 1/2

https://purr.purdue.edu/publications/2292

4. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*log(1/x) on [0,1]

2016-11-21 14:51:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZC80VC

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 0

https://purr.purdue.edu/publications/2297

5. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(-1/2)*log(1/x) on [0,1]

2016-11-21 15:43:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PZ56TN

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = -1/2

https://purr.purdue.edu/publications/2293

6. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(1/2)*log(1/x) on [0,1]

2016-11-21 14:39:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76W981N

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 1/2

https://purr.purdue.edu/publications/2295

7. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^4)^(1/2) on [0,1]

2016-11-15 19:49:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DN432K

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 0, b = 1/2, c = 4

https://purr.purdue.edu/publications/2273

8. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

2016-10-21 17:29:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7T151N8

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=0

https://purr.purdue.edu/publications/2238

9. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1/x) on [0,1]

2016-11-15 16:12:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7639MQT

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = 0, b = 1

https://purr.purdue.edu/publications/2268

10. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*(1-x^3)^(-1/2) on [0,1]

2016-11-15 19:19:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MSG

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = -1/2, b = -1/2, c = 3

https://purr.purdue.edu/publications/2274

11. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

2016-12-01 15:42:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SQ8XDM

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

https://purr.purdue.edu/publications/2302

12. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

2016-11-22 17:01:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZMR

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

https://purr.purdue.edu/publications/2298

13. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*log(1/x) on [0,1]

2016-11-21 20:18:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BP00RH

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = -1/2, b = 1

https://purr.purdue.edu/publications/2291

14. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^2 on [0,1]

2016-10-20 16:06:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72J68T4

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^2 on [0,1], a=-1/2

https://purr.purdue.edu/publications/2236

15. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^3 on [0,1]

2016-11-15 16:17:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XK8CH6

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=-1/2, b=3

https://purr.purdue.edu/publications/2270

16. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*(1-x^(1/4))^(3/4) on [0,1]

2016-11-15 19:42:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TR2

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 1/2, b = 3/4, c = 1/4

https://purr.purdue.edu/publications/2272

17. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

2016-12-01 20:27:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78P5XHT

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

https://purr.purdue.edu/publications/2304

18. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

2016-10-24 14:52:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JH3J5S

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

https://purr.purdue.edu/publications/2240

19. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*log(1/x) on [0,1]

2016-11-21 15:52:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FF3QBG

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = 1/2, b = 1

https://purr.purdue.edu/publications/2290

20. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-.999*x^2)*(1-x^2)]^(-1/2) on [-1,1]

2016-11-23 16:22:17 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7N877RQ

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=.999

https://purr.purdue.edu/publications/2247

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).