Tags: Walter Gautschi Archives

Resources (21-40 of 228)

  1. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1/x)]^2 on [0,1]

    2017-06-20 12:48:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72B8W0H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=0, b=2

    https://purr.purdue.edu/publications/2269

  2. 32-digit values of the first 100 recurrence coefficients for a lower subrange Binet weight function

    2017-05-30 15:10:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CN71XS

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,1]

    https://purr.purdue.edu/publications/2537

  3. 32-digit values of the first 100 recurrence coefficients for an upper subrange Binet weight function

    2017-05-30 15:08:16 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TTZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [1,Inf]

    https://purr.purdue.edu/publications/2531

  4. 32-digit values of the first 100 recurrence coefficients for the half-range Binet weight function

    2017-05-18 13:57:34 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DN4331

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2538

  5. 32-digit values of the first 100 recurrence coefficients for a Binet-like weight function

    2017-05-09 13:19:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73B5X5B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1+exp(-abs(x))) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2521

  6. 32-digit values of the first 100 recurrence coefficients for a half-range Binet-like weight function

    2017-05-09 13:18:02 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7736NX3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1+exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2522

  7. 32-digit values of the first 64 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 1

    2017-05-02 19:16:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72J68W1

    32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=1

    https://purr.purdue.edu/publications/2494

  8. 32-digit values of the first 63 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 3

    2017-05-02 18:30:41 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79Z92XF

    32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=3

    https://purr.purdue.edu/publications/2495

  9. 32-digit values of the first 62 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 5

    2017-05-02 18:29:33 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FQ9TMB

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=5

    https://purr.purdue.edu/publications/2496

  10. 32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 1/2

    2017-05-02 18:28:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KH0KBM

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=1/2

    https://purr.purdue.edu/publications/2497

  11. 32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent -1/2

    2017-05-02 18:25:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q81B3S

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2498

  12. 32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function w(x)=exp(-x)*log(1+1/x) on [0,Inf] with exponent 0

    2017-05-01 13:14:44 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CZ3555

    32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2452

  13. 32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-28 13:25:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PG1PR6

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=1/2

    https://purr.purdue.edu/publications/2489

  14. 32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-27 12:19:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZW1HX0

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=-1/2

    https://purr.purdue.edu/publications/2488

  15. 32-digit values of the first 65 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing an algebraic singularity with exponent 1/2 and exponential/logarithmic factors

    2017-04-25 13:18:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JS9NFN

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2477

  16. 32-digit values of the first 65 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing an algebraic singularity with exponent -1/2 and exponential/logarithmic factors

    2017-04-24 17:05:14 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KS6PK1

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2469

  17. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*log(1/x) on [0,1]

    2017-04-24 14:28:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BP00RH

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = -1/2, b = 1

    https://purr.purdue.edu/publications/2291

  18. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*log(1/x) on [0,1]

    2017-04-24 14:27:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FF3QBG

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = 1/2, b = 1

    https://purr.purdue.edu/publications/2290

  19. 32-digit values of the first 65 recurrence coefficients for the weight function w(x)=exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-24 12:45:26 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7028PJT

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=0

    https://purr.purdue.edu/publications/2451

  20. 32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^5*exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-21 20:40:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73R0QWH

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=5

    https://purr.purdue.edu/publications/2462

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).