Tags: Walter Gautschi Archives

Resources (1-20 of 228)

  1. 32-digit values of the first 100 recurrence coefficients for the lower symmetric subrange Binet weight function on [-c,c], c=1

    2018-01-09 14:00:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7862DNF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-c,c], c=1

    https://purr.purdue.edu/publications/2847

  2. 32-digit values of the first 100 recurrence coefficients for a lower subrange Binet weight function

    2018-01-09 13:48:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CN71XS

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,1]

    https://purr.purdue.edu/publications/2537

  3. 32-digit values of the first 100 recurrence coefficients for a lower subrange Binet weight function

    2017-10-25 16:20:45 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CN71XS

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,1]

    https://purr.purdue.edu/publications/2537

  4. Loading variable-precision recurrence coefficients

    2017-10-25 12:59:44 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7P26W3X

    Loading a text file of variable-precision recurrence coefficients into Matlab symbolic or double-precision arrays

    https://purr.purdue.edu/publications/2271

  5. 32-digit values of the first 100 recurrence coefficients for the lower symmetric subrange Binet weight function on [-c,c], c=1

    2017-10-18 20:08:21 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7862DNF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-c,c], c=1

    https://purr.purdue.edu/publications/2847

  6. 32-digit values of the first 100 recurrence coefficients for an upper subrange Binet weight function

    2017-10-18 13:12:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TTZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [1,Inf]

    https://purr.purdue.edu/publications/2531

  7. 32-digit values of the first 100 recurrence coefficients for the Binet weight function

    2017-10-17 14:52:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7P55KH7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2533

  8. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 10

    2017-10-13 14:56:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72N50FJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=10

    https://purr.purdue.edu/publications/2846

  9. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 8

    2017-10-13 14:54:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76D5R5W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=8

    https://purr.purdue.edu/publications/2845

  10. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 6

    2017-10-13 14:42:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7B56GW6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=6

    https://purr.purdue.edu/publications/2844

  11. 32-digit values of the first 100 recurrence coefficients for the half-range squared generalized Binet weight function with parameter 1/2

    2017-10-12 13:00:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FT8J7R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-a*exp(-x)) on [0,Inf], a = 1/2

    https://purr.purdue.edu/publications/2842

  12. 32-digit values of the first 100 recurrence coefficients for the half-range squared Binet weight function

    2017-10-12 12:59:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KK98Z2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2841

  13. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Binet weight function with parameter 1/2

    2017-10-12 12:56:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QC01NW

    32-digit values of the first 100 recurrence coefficients for the half-range generalized Binet weight function w(x)=-log(1-a*exp(-x)) on [0,Inf], a = 1/2

    https://purr.purdue.edu/publications/2840

  14. 32-digit values of the first 100 recurrence coefficients for the squared generalized Binet weight function with parameter 1/2

    2017-10-12 12:47:21 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V40SC7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-a*exp(-|x|)) on [-Inf,Inf], a = 1/2

    https://purr.purdue.edu/publications/2839

  15. 32-digit values of the first 100 recurrence coefficients for the generalized Binet weight function with parameter 1/2

    2017-10-12 12:45:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZW1J3N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-a*exp(-|x|)) on [-Inf,Inf], a = 1/2

    https://purr.purdue.edu/publications/2838

  16. 32-digit values of the first 100 recurrence coefficients for an upper subrange Binet weight function

    2017-07-26 13:03:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TTZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [1,Inf]

    https://purr.purdue.edu/publications/2531

  17. 32-digit values of the first 100 recurrence coefficients for the half-range Binet weight function

    2017-07-26 12:52:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DN4331

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2538

  18. 32-digit values of the first 100 recurrence coefficients for a lower subrange Binet weight function

    2017-07-26 12:48:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CN71XS

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,1]

    https://purr.purdue.edu/publications/2537

  19. 32-digit values of the first 100 recurrence coefficients for the square Binet weight function

    2017-07-26 12:44:46 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KW5D2N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1-exp(-|x|))]^2 on [-Inf, Inf]

    https://purr.purdue.edu/publications/2593

  20. 32-digit values of the first 100 recurrence coefficients for the Binet weight function

    2017-07-26 12:43:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7P55KH7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2533

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).