You may have heard that PURR may be down temporarily this Thursday (10/17) for maintenance. The maintenance is being rescheduled, and we do not expect to have any downtime this week. We will let you know when the maintenance has been rescheduled. close

Tags: Walter Gautschi Archives

Datasets (81-100 of 228)

  1. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=1

    2017-01-09 19:21:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73T9F6B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=1

    https://purr.purdue.edu/publications/2342

  2. 32-digit values of the first 100 recurrence coefficients for the half-range Binet weight function

    2017-07-26 12:52:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DN4331

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2538

  3. 32-digit values of the first 100 recurrence coefficients for the half-range Binet weight function

    2017-05-18 13:57:34 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DN4331

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2538

  4. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 10

    2017-10-13 14:56:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72N50FJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=10

    https://purr.purdue.edu/publications/2846

  5. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 6

    2017-10-13 14:42:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7B56GW6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=6

    https://purr.purdue.edu/publications/2844

  6. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 8

    2017-10-13 14:54:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76D5R5W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=8

    https://purr.purdue.edu/publications/2845

  7. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponents mu=0, nu=4

    2016-12-07 19:47:34 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7416V2R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=4

    https://purr.purdue.edu/publications/2321

  8. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponents mu=0, nu=3

    2017-02-16 14:05:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7D21VMV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^μ*exp(-x^ν) on [0,Inf], μ=0, ν=3

    https://purr.purdue.edu/publications/2410

  9. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Binet weight function with parameter 1/2

    2017-10-12 12:56:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QC01NW

    32-digit values of the first 100 recurrence coefficients for the half-range generalized Binet weight function w(x)=-log(1-a*exp(-x)) on [0,Inf], a = 1/2

    https://purr.purdue.edu/publications/2840

  10. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent -1/2

    2016-10-19 14:03:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q81B2B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=-1/4

    https://purr.purdue.edu/publications/2231

  11. 32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    2016-10-19 13:22:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7X63JTM

    32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    https://purr.purdue.edu/publications/1490

  12. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent 1/2

    2016-10-19 14:08:46 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KH0K95

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=1/4

    https://purr.purdue.edu/publications/2232

  13. 32-digit values of the first 100 recurrence coefficients for the half-range squared Binet weight function

    2017-10-12 12:59:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KK98Z2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2841

  14. 32-digit values of the first 100 recurrence coefficients for the half-range squared generalized Binet weight function with parameter 1/2

    2017-10-12 13:00:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FT8J7R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-a*exp(-x)) on [0,Inf], a = 1/2

    https://purr.purdue.edu/publications/2842

  15. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents -1/2 times a logarithmic factor

    2016-10-19 16:03:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FQ9TKW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=-1/2

    https://purr.purdue.edu/publications/2233

  16. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents 1/2 times a logarithmic factor

    2016-10-19 18:09:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79Z92VJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=1/2

    https://purr.purdue.edu/publications/2234

  17. 32-digit values of the first 100 recurrence coefficients for a lower subrange Binet weight function

    2018-01-09 13:48:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CN71XS

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,1]

    https://purr.purdue.edu/publications/2537

  18. 32-digit values of the first 100 recurrence coefficients for a lower subrange Binet weight function

    2017-10-25 16:20:45 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CN71XS

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,1]

    https://purr.purdue.edu/publications/2537

  19. 32-digit values of the first 100 recurrence coefficients for the lower symmetric subrange Binet weight function on [-c,c], c=1

    2018-01-09 14:00:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7862DNF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-c,c], c=1

    https://purr.purdue.edu/publications/2847

  20. 32-digit values of the first 100 recurrence coefficients for the lower symmetric subrange Binet weight function on [-c,c], c=1

    2017-10-18 20:08:21 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7862DNF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-c,c], c=1

    https://purr.purdue.edu/publications/2847

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).