You may have heard that PURR may be down temporarily this Thursday (10/17) for maintenance. The maintenance is being rescheduled, and we do not expect to have any downtime this week. We will let you know when the maintenance has been rescheduled. close

Tags: Walter Gautschi Archives

Datasets (41-60 of 228)

  1. 32-digit values of the first 100 recurrence coefficients for an upper subrange Binet weight function

    2017-07-26 13:03:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TTZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [1,Inf]

    https://purr.purdue.edu/publications/2531

  2. 32-digit values of the first 100 recurrence coefficients for an upper subrange Binet weight function

    2017-05-30 15:08:16 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TTZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [1,Inf]

    https://purr.purdue.edu/publications/2531

  3. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials

    2016-11-07 19:58:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BV7DKM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=0

    https://purr.purdue.edu/publications/2259

  4. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent -1/2

    2016-11-09 16:16:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q23X6V

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2263

  5. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent 1/2

    2016-11-09 16:15:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TT4NXV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=1/4

    https://purr.purdue.edu/publications/2264

  6. 32-digit values of the first 100 recurrence coefficients for lower subrange Jacobi polynomials

    2016-11-03 12:57:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7M906MW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x ) = (1-x)^a*(1+x)^b on [-1,c], c = 0, a = -1/2, b = 1/2

    https://purr.purdue.edu/publications/2254

  7. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials

    2016-11-07 19:57:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7GH9FX2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=0

    https://purr.purdue.edu/publications/2257

  8. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent -1/2

    2016-11-08 18:52:02 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73B5X4W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2261

  9. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent 1/2

    2016-11-09 16:30:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZK5DNK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=1/4

    https://purr.purdue.edu/publications/2262

  10. 32-digit values of the first 100 recurrence coefficients for symmetric subrange Jacobi polynomials

    2016-11-02 17:45:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7R20ZB7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*(1+x)^b on [-c,c], c=1/2, a=-1/2, b=1/2

    https://purr.purdue.edu/publications/2251

  11. 32-digit values of the first 100 recurrence coefficients for the 10th-order cardinal B-spline weight function

    2016-11-02 14:14:14 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70K26JX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=phi_m(x) on [0,m], m=10

    https://purr.purdue.edu/publications/2250

  12. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.001

    2016-12-13 20:55:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TH8JPW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.001

    https://purr.purdue.edu/publications/2330

  13. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.005

    2016-12-13 20:54:37 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z899DM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.005

    https://purr.purdue.edu/publications/2329

  14. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.02

    2016-12-13 20:50:55 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7319SWH

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.02

    https://purr.purdue.edu/publications/2328

  15. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.1

    2016-12-13 20:49:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76T0JNX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.1

    https://purr.purdue.edu/publications/2327

  16. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=1

    2016-12-13 20:47:30 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BK19B6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=1

    https://purr.purdue.edu/publications/2326

  17. 32-digit values of the first 100 recurrence coefficients for the Binet weight function

    2017-10-17 14:52:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7P55KH7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2533

  18. 32-digit values of the first 100 recurrence coefficients for the Binet weight function

    2017-07-26 12:43:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7P55KH7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2533

  19. 32-digit values of the first 100 recurrence coefficients relative to the Bose-Einstein weight function w(x)=x/(e^x-1) computed by the SOPQ routine sr_boseeinstein(100,1,32)

    2016-10-13 16:31:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7H12ZX3

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Bose-Einstein weight function w(x)=x/(e^x-1) computed by the SOPQ routine sr_boseeinstein(100,1,32)

    https://purr.purdue.edu/publications/1476

  20. 32-digit values of the first 100 recurrence coefficients relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^3 computed by the SOPQ routine sr_boseeinstein(100,3,32)

    2016-10-17 13:17:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73R0QRQ

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^3 computed by the routine sr_boseeinstein(100,3,32)

    https://purr.purdue.edu/publications/1479

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).