You may have heard that PURR may be down temporarily this Thursday (10/17) for maintenance. The maintenance is being rescheduled, and we do not expect to have any downtime this week. We will let you know when the maintenance has been rescheduled. close

Tags: Walter Gautschi Archives

Datasets (21-40 of 228)

  1. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters 3/2, -1/2 and exponent 1

    2017-03-01 14:52:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HM56FQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=3/2, b=-1/2, c=1

    https://purr.purdue.edu/publications/2426

  2. 32-digit values of the first 100 recurrence coefficients for a half-range Binet-like weight function

    2017-05-09 13:18:02 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7736NX3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1+exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2522

  3. 32-digit values of the first 100 recurrence coefficients for a half-range hyperexponential weight function

    2017-02-14 19:50:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JQ0Z1W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-exp(x)) on [0,Inf]

    https://purr.purdue.edu/publications/2399

  4. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational square-root argument

    2017-03-17 14:52:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XG9P5S

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x^(1/2))/(1-x^(1/2))) on [0,1]

    https://purr.purdue.edu/publications/2439

  5. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational argument

    2017-03-17 14:57:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MTX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x)/(1-x)) on [0,1]

    https://purr.purdue.edu/publications/2436

  6. 32-digit values of the first 100 recurrence coefficients for a lower subrange Binet weight function

    2017-07-26 12:48:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CN71XS

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,1]

    https://purr.purdue.edu/publications/2537

  7. 32-digit values of the first 100 recurrence coefficients for a lower subrange Binet weight function

    2017-05-30 15:10:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CN71XS

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,1]

    https://purr.purdue.edu/publications/2537

  8. 28-digit values of the recursion coefficients relative to the Bessel weight function w(x)=frac{sqrt{3}}{pi}K_{1/3}(x) on [0,infty]

    2016-11-23 16:16:14 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JW8BS2

    28-digit values of the recursion coefficients for orthogonal polynomials relative to the Bessel weight function w(x)=frac{sqrt{3}}{pi}K_{1/3}(x) on [0,infty]

    https://purr.purdue.edu/publications/1475

  9. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 1/10

    2017-02-10 15:18:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z03656

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/10

    https://purr.purdue.edu/publications/2397

  10. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 1/2

    2017-02-10 15:18:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72R3PP7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/2

    https://purr.purdue.edu/publications/2396

  11. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 10

    2017-02-10 15:16:06 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76H4FFD

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=10

    https://purr.purdue.edu/publications/2395

  12. 32-digit values of the first 100 recurrence coefficients for a square-root-logarithmic weight function

    2016-12-01 19:34:26 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NZ85NT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1/x)]^b on [0,1], b=1/2

    https://purr.purdue.edu/publications/2306

  13. 32-digit values of the first 100 recurrence coefficients for a symmetric hyperexponential weight function

    2017-02-09 16:37:32 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KP804N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-exp(|x|)) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2400

  14. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a = -1/2 and power b=3

    2017-03-30 13:08:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R75X26Z9

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=3

    https://purr.purdue.edu/publications/2447

  15. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a =1/2 and power b=3

    2017-03-30 13:06:06 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZN6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=3

    https://purr.purdue.edu/publications/2446

  16. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=-1/2 and power b=2

    2017-03-17 18:13:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7WM1BDT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=2

    https://purr.purdue.edu/publications/2442

  17. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=1/2 and power b=2

    2017-03-30 13:10:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7251G6V

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=2

    https://purr.purdue.edu/publications/2445

  18. 32-digit values of the first 100 recurrence coefficients for a weight function with a logarithmic type singularity

    2017-03-10 15:43:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BR8Q6R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-x^2) on [-1,1]

    https://purr.purdue.edu/publications/2438

  19. 32-digit values of the first 100 recurrence coefficients for an Airy weight function

    2016-10-19 13:50:30 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V122R6

    32-digit values of the first 100 recurrence coefficients for the (normalized) weight function w(x)=c*x^(-5/6)e^(-x)Ai((3x/2)^(2/3)) on [0,Inf], c=2^(-1/6)*3^(1/6)/pi^(1/2), where Ai is the Airy function

    https://purr.purdue.edu/publications/2031

  20. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,1/2,32)

    2016-10-12 13:51:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79G5JRN

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{-1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,1/2,32)

    https://purr.purdue.edu/publications/1494

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).