Tags: Walter Gautschi Archives

Datasets (181-200 of 228)

  1. 32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 1/2

    2017-05-02 18:28:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KH0KBM

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=1/2

    https://purr.purdue.edu/publications/2497

  2. 32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function w(x)=exp(-x)*log(1+1/x) on [0,Inf] with exponent 0

    2017-05-01 13:14:44 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CZ3555

    32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2452

  3. 32-digit values of the first 65 recurrence coefficients for the weight function w(x)=exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-24 12:45:26 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7028PJT

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=0

    https://purr.purdue.edu/publications/2451

  4. 32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-27 12:19:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZW1HX0

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=-1/2

    https://purr.purdue.edu/publications/2488

  5. 32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-28 13:25:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PG1PR6

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=1/2

    https://purr.purdue.edu/publications/2489

  6. 32-digits values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*[log(1/x)]^2 on [0,1]

    2016-10-20 16:18:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XS5SC9

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^2 on [0,1], a=1/2

    https://purr.purdue.edu/publications/2237

  7. Abel polynomials

    2017-01-12 17:20:39 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72V2D3Z

    Matlab routine for the first N recurrence coefficients of Abel polynomials

    https://purr.purdue.edu/publications/2359

  8. Associated Legendre polynomials

    2017-03-10 15:39:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7GH9FZH

    Matlab routines for the first N recurrence coefficients of associated Legendre polynomials

    https://purr.purdue.edu/publications/2437

  9. BIJ: Matlab programs for testing and extending Bernstein's Inequality for Jacobi polynomials

    2014-04-22 16:27:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V985Z5

    Bernstein’s inequality for Jacobi polynomials is analyzed here analytically and computationally with regard to validity and sharpness

    https://purr.purdue.edu/publications/1569

  10. CHA: Matlab programs for computing a challenging integral

    2014-04-22 16:52:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QJ7F7V

    Matlab and FORTRAN codes to evaluate a densely and wildly oscillatory integral that had been proposed as a computational problem in the SIAM 100-Digit Challenge.

    https://purr.purdue.edu/publications/1563

  11. Charlier orthogonal polynomials with parameter a

    2017-01-20 13:55:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R75M63PW

    Matlab routine for the first N recurrence coefficients of Charlier orthogonal polynomials with parameter a

    https://purr.purdue.edu/publications/2369

  12. CIZJP: Matlab programs for conjectured inequalities for zeros of Jacobi polynomials

    2014-04-22 16:29:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KS6PH4

    Inequalities for the largest zero of Jacobi polynomials are here extended to all zeros of Jacobi polynomials, and new relevant conjectures are formulated.

    https://purr.purdue.edu/publications/1570

  13. Gauss quadrature rules

    2016-11-30 17:28:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72805KQ

    Variable-precision Matlab routine for generating the nodes and weights of a Gaussian quadrature rule

    https://purr.purdue.edu/publications/2305

  14. Generalized Gegenbauer polynomials

    2017-02-23 13:20:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73J39ZH

    Matlab routine for the first N recurrence coefficients of generalized Gegenbauer polynomials

    https://purr.purdue.edu/publications/2416

  15. Generalized Hermite polynomials

    2016-12-14 14:04:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79K4878

    Matlab routine for the first N recurrence coefficients of generalized Hermite polynomials

    https://purr.purdue.edu/publications/2333

  16. Generalized Laguerre polynomials

    2016-12-14 14:02:34 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K07280

    Matlab routines for the first N recurrence coefficients of generalized Laguerre polynomials

    https://purr.purdue.edu/publications/2332

  17. GQLOG: Matlab routines for computing Gauss Quadrature rules with logarithmic weight functions

    2014-04-22 16:31:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72R3PMB

    Matlab routines for computing Gauss Quadrature rules with logarithmic weight functions

    https://purr.purdue.edu/publications/1571

  18. HOGGRL: High-order generalized Gauss-Radau and Gauss-Lobatto Formulae for Jacobi and Laguerre weight functions

    2014-04-22 16:38:33 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7G15XSQ

    Matlab source codes and files that compute the high-order Gauss-Radau and Gauss-Lobatto formulae for Jacobi and Laguerre weight functions

    https://purr.purdue.edu/publications/1574

  19. HPGT: High-precision Gauss-Turan quadrature rules

    2014-04-22 16:49:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R71V5BW8

    Matlab routines that calculate high-precision Gauss-Turan quadrature rules

    https://purr.purdue.edu/publications/1580

  20. INERFC: Evaluation of the Repeated Integrals of the Coerror Function by Half-Range Gauss-Hermite Quadrature

    2016-07-07 15:07:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SB43PZ

    INERFC: Evaluation of the Repeated Integrals of the Coerror Function by Half-Range Gauss-Hermite Quadrature

    https://purr.purdue.edu/publications/1653

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).