Tags: Walter Gautschi Archives

Datasets (161-180 of 228)

  1. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=16/3

    2017-02-27 13:43:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PC30CQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=16/3

    https://purr.purdue.edu/publications/2421

  2. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=4/3

    2017-02-27 13:41:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XS5SDR

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=4/3

    https://purr.purdue.edu/publications/2418

  3. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=8/3

    2017-02-27 13:42:33 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7T43R2M

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=8/3

    https://purr.purdue.edu/publications/2420

  4. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1/x) on [0,1]

    2017-04-12 13:19:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7639MQT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = 0, b = 1

    https://purr.purdue.edu/publications/2268

  5. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*log(1/x) on [0,1]

    2017-04-24 14:28:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BP00RH

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = -1/2, b = 1

    https://purr.purdue.edu/publications/2291

  6. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*log(1/x) on [0,1]

    2017-04-24 14:27:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FF3QBG

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = 1/2, b = 1

    https://purr.purdue.edu/publications/2290

  7. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1/x)]^2 on [0,1]

    2017-06-20 12:48:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72B8W0H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=0, b=2

    https://purr.purdue.edu/publications/2269

  8. 32-digit values of the first 62 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing a logarithmic singularity

    2017-04-20 12:12:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7W9575V

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^5*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2471

  9. 32-digit values of the first 62 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 5

    2017-05-02 18:29:33 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FQ9TMB

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=5

    https://purr.purdue.edu/publications/2496

  10. 32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^5*exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-21 20:40:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73R0QWH

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=5

    https://purr.purdue.edu/publications/2462

  11. 32-digit values of the first 63 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing a logarithmic singularity

    2017-04-20 12:06:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70Z719D

    32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^3*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2470

  12. 32-digit values of the first 63 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 3

    2017-05-02 18:30:41 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79Z92XF

    32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=3

    https://purr.purdue.edu/publications/2495

  13. 32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^3*exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-20 12:02:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7S09

    32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=3

    https://purr.purdue.edu/publications/2463

  14. 32-digit values of the first 64 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing a logarithmic singularity

    2017-04-20 18:58:41 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7H1300S

    32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2453

  15. 32-digit values of the first 64 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 1

    2017-05-02 19:16:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72J68W1

    32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=1

    https://purr.purdue.edu/publications/2494

  16. 32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x*exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-20 18:27:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7MS3QRV

    32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=1

    https://purr.purdue.edu/publications/2456

  17. 32-digit values of the first 65 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing a logarithmic singularity

    2017-04-20 15:24:41 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7RJ4GGK

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2450

  18. 32-digit values of the first 65 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing an algebraic singularity with exponent -1/2 and exponential/logarithmic factors

    2017-04-24 17:05:14 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KS6PK1

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2469

  19. 32-digit values of the first 65 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing an algebraic singularity with exponent 1/2 and exponential/logarithmic factors

    2017-04-25 13:18:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JS9NFN

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2477

  20. 32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent -1/2

    2017-05-02 18:25:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q81B3S

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2498

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).