Tags: Walter Gautschi Archives

Datasets (141-160 of 228)

  1. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-x^2/2)*(1-x^2)]^(-1/2) on [-1,1]

    2016-10-28 13:05:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HH6H1D

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=1/2

    https://purr.purdue.edu/publications/2248

  2. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1/x)]^2 on [0,1]

    2016-11-15 16:14:16 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72B8W0H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=0, b=2

    https://purr.purdue.edu/publications/2269

  3. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials

    2016-11-08 15:11:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7736NWN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=0

    https://purr.purdue.edu/publications/2260

  4. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent -1/2

    2016-11-09 20:05:30 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FN145H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2265

  5. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent 1/2

    2016-11-09 20:24:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K935HZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=1/4

    https://purr.purdue.edu/publications/2266

  6. 32-digit values of the first 100 recurrence coefficients for upper subrange Jacobi polynomials

    2016-11-02 15:58:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7VT1Q2N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*(1+x)^b on [c,1], c=0, a=-1/2, b=1/2

    https://purr.purdue.edu/publications/2255

  7. 32-digit values of the first 100 recurrence coefficients relative to the Bose-Einstein weight function w(x)=x/(e^x-1) computed by the SOPQ routine sr_boseeinstein(100,1,32)

    2014-04-22 09:55:32 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7H12ZX3

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Bose-Einstein weight function w(x)=x/(e^x-1) computed by the SOPQ routine sr_boseeinstein(100,1,32)

    https://purr.purdue.edu/publications/1476

  8. 32-digit values of the first 100 recurrence coefficients relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^2 computed by the SOPQ routine sr_boseeinstein(100,2,32)

    2014-04-22 10:40:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R77H1GGF

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^2 computed by the SOPQ routine sr_boseeinstein(100,2,32)

    https://purr.purdue.edu/publications/1478

  9. 32-digit values of the first 100 recurrence coefficients relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^3 computed by the SOPQ routine sr_boseeinstein(100,3,32)

    2014-04-22 10:41:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73R0QRQ

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^3 computed by the routine sr_boseeinstein(100,3,32)

    https://purr.purdue.edu/publications/1479

  10. 32-digit values of the first 100 recurrence coefficients relative to the Fermi-Dirac weight function w(x)=1/(e^x+1) computed by the SOPQ routine sr_fermidirac(100,1,32)

    2014-04-24 00:00:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7C82765

    32-digit values of the first 100 recurrence coefficients relative to the Fermi-Dirac weight function w(x)=1/(e^x+1) computed by the SOPQ routine sr_fermidirac(100,1,32)

    https://purr.purdue.edu/publications/1481

  11. 32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    2014-04-22 08:19:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7X63JTM

    32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    https://purr.purdue.edu/publications/1490

  12. 32-digit values of the first 100 recurrence coefficients relative to the Theodorus weight function w(x)=x^{1/2}/(e^x-1) on R_{+} computed by the routine sr_theodorus(100,32)

    2014-04-22 08:12:17 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R71Z4290

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Theodorus weight function w(x)=x^{1/2}/(e^x-1) on R_{+} computed by the routine sr_theodorus(100,32)

    https://purr.purdue.edu/publications/1472

  13. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)

    2014-04-22 08:59:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70Z715M

    32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)

    https://purr.purdue.edu/publications/1491

  14. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,1/2,32)

    2014-04-22 11:08:37 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79G5JRN

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{-1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,1/2,32)

    https://purr.purdue.edu/publications/1494

  15. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,-1/2,32)

    2014-04-22 10:38:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SF2T39

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,-1/2,32)

    https://purr.purdue.edu/publications/1498

  16. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,1/2,32)

    2014-04-22 08:54:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7RWJ

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,1/2,32)

    https://purr.purdue.edu/publications/1500

  17. 32-digit values of the first 100 recurrence coefficients using the Bose-Einstein weight function: w(x)=[x/(e^x-1)]^4 computed by the SOPQ routine sr_boseeinstein(100,4,32)

    2014-04-22 10:42:19 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7000013

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials using the Bose-Einstein weight function: w(x)=[x/(e^x-1)]^4 computed by the SOPQ routine sr_boseeinstein(100,4,32)

    https://purr.purdue.edu/publications/1480

  18. 32-digit values of the first 100 recurrence coefficients, obtained by discretization, for a radiative transfer weight function with parameter c=2/3

    2017-01-13 14:00:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CF9N35

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=2/3

    https://purr.purdue.edu/publications/2316

  19. 32-digit values of the first 100 recurrence coefficients, obtained from modified moments, for the Laguerre weight function multiplied by a logarithmically singular function

    2016-12-09 20:34:48 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7M043CX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2301

  20. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=2/3

    2016-12-06 14:55:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7N014H9

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=2/3

    https://purr.purdue.edu/publications/2315

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).