Tags: Walter Gautschi Archives

Datasets (121-140 of 228)

  1. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*log(1/x) on [0,1]

    2016-11-21 14:48:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7348HBP

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 0

    https://purr.purdue.edu/publications/2296

  2. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(-1/2)*log(1/x) on [0,1]

    2016-11-21 15:48:55 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K64G26

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = -1/2

    https://purr.purdue.edu/publications/2294

  3. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(1/2)*log(1/x) on [0,1]

    2016-11-21 15:40:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TQ5ZHJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 1/2

    https://purr.purdue.edu/publications/2292

  4. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*log(1/x) on [0,1]

    2016-11-21 14:51:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZC80VC

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 0

    https://purr.purdue.edu/publications/2297

  5. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(-1/2)*log(1/x) on [0,1]

    2016-11-21 15:43:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PZ56TN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = -1/2

    https://purr.purdue.edu/publications/2293

  6. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(1/2)*log(1/x) on [0,1]

    2016-11-21 14:39:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76W981N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 1/2

    https://purr.purdue.edu/publications/2295

  7. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^4)^(1/2) on [0,1]

    2016-11-15 19:49:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DN432K

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 0, b = 1/2, c = 4

    https://purr.purdue.edu/publications/2273

  8. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2016-10-21 17:29:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7T151N8

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2238

  9. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1/x) on [0,1]

    2016-11-15 16:12:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7639MQT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = 0, b = 1

    https://purr.purdue.edu/publications/2268

  10. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*(1-x^3)^(-1/2) on [0,1]

    2016-11-15 19:19:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MSG

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = -1/2, b = -1/2, c = 3

    https://purr.purdue.edu/publications/2274

  11. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

    2016-12-01 15:42:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SQ8XDM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2302

  12. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2016-11-22 17:01:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZMR

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2298

  13. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*log(1/x) on [0,1]

    2016-11-21 20:18:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BP00RH

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = -1/2, b = 1

    https://purr.purdue.edu/publications/2291

  14. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^2 on [0,1]

    2016-10-20 16:06:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72J68T4

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^2 on [0,1], a=-1/2

    https://purr.purdue.edu/publications/2236

  15. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^3 on [0,1]

    2016-11-15 16:17:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XK8CH6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=-1/2, b=3

    https://purr.purdue.edu/publications/2270

  16. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*(1-x^(1/4))^(3/4) on [0,1]

    2016-11-15 19:42:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TR2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 1/2, b = 3/4, c = 1/4

    https://purr.purdue.edu/publications/2272

  17. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

    2016-12-01 20:27:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78P5XHT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

    https://purr.purdue.edu/publications/2304

  18. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2016-10-24 14:52:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JH3J5S

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

    https://purr.purdue.edu/publications/2240

  19. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*log(1/x) on [0,1]

    2016-11-21 15:52:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FF3QBG

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = 1/2, b = 1

    https://purr.purdue.edu/publications/2290

  20. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-.999*x^2)*(1-x^2)]^(-1/2) on [-1,1]

    2016-11-23 16:22:17 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7N877RQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=.999

    https://purr.purdue.edu/publications/2247

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).