You may have heard that PURR may be down temporarily this Thursday (10/17) for maintenance. The maintenance is being rescheduled, and we do not expect to have any downtime this week. We will let you know when the maintenance has been rescheduled. close

Tags: Walter Gautschi Archives

Datasets (101-120 of 228)

  1. 32-digit values of the first 100 recurrence coefficients for the midpoint weight function

    2017-01-12 19:20:24 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z31WN1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|/(exp(2*π*|x|)+1) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2362

  2. 32-digit values of the first 100 recurrence coefficients for the Morse weight function

    2017-01-10 20:36:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7G44N8B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-5*x+6*(exp(-x)-1)] on [0,Inf]

    https://purr.purdue.edu/publications/2347

  3. 32-digit values of the first 100 recurrence coefficients for the Plana weight function

    2017-01-12 16:54:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BC3WH5

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|/(exp(2*π*|x|)-1) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2361

  4. 32-digit values of the first 100 recurrence coefficients for the reciprocal gamma weight function

    2016-10-27 13:48:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7S180GF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=1/gamma(x) on [0,Inf]

    https://purr.purdue.edu/publications/2246

  5. 32-digit values of the first 100 recurrence coefficients for the Schroedinger weight function with exponent mu=5

    2016-12-08 17:37:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QR4V3Z

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^4/16) on [0,Inf], mu=5

    https://purr.purdue.edu/publications/2322

  6. 32-digit values of the first 100 recurrence coefficients for the second-order cardinal B-spline weight function obtained by discretization

    2016-11-02 14:11:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74B2Z9Q

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=phi_m(x) on [0,m], m=2

    https://purr.purdue.edu/publications/2249

  7. 32-digit values of the first 100 recurrence coefficients for the second-order cardinal B-spline weight function obtained from moments

    2016-12-01 15:19:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XG9P4B

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=phi_m(x) on [0,m], m=2

    https://purr.purdue.edu/publications/2303

  8. 32-digit values of the first 100 recurrence coefficients for the square Binet weight function

    2017-07-26 12:44:46 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KW5D2N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1-exp(-|x|))]^2 on [-Inf, Inf]

    https://purr.purdue.edu/publications/2593

  9. 32-digit values of the first 100 recurrence coefficients for the squared generalized Binet weight function with parameter 1/2

    2017-10-12 12:47:21 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V40SC7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-a*exp(-|x|)) on [-Inf,Inf], a = 1/2

    https://purr.purdue.edu/publications/2839

  10. 32-digit values of the first 100 recurrence coefficients for the symmetric Laguerre weight function

    2017-02-07 20:55:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QF8QVK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-|x|) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2398

  11. 32-digit values of the first 100 recurrence coefficients relative to the Theodorus weight function w(x)=x^{1/2}/(e^x-1) on R_{+} computed by the routine sr_theodorus(100,32)

    2016-10-12 13:01:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R71Z4290

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Theodorus weight function w(x)=x^{1/2}/(e^x-1) on R_{+} computed by the routine sr_theodorus(100,32)

    https://purr.purdue.edu/publications/1472

  12. 32-digit values of the first 100 recurrence coefficients for an upper subrange Binet weight function

    2017-10-18 13:12:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TTZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [1,Inf]

    https://purr.purdue.edu/publications/2531

  13. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c = -1, with exponent 0

    2017-01-10 18:28:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V9862X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = 0

    https://purr.purdue.edu/publications/2355

  14. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c = -1, with exponent 1/2

    2017-01-10 20:34:24 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KW5D16

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = 1/4

    https://purr.purdue.edu/publications/2357

  15. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c=-1, with exponent -1/2

    2017-01-10 18:41:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QN64Q2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = -1/4

    https://purr.purdue.edu/publications/2356

  16. 32-digit values of the first 100 recurrence coefficients for the upper subrange Hermite weight function on [c,Inf], c=-√(1/2)

    2017-01-10 14:59:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7028PHC

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x^2) on [c,Inf], c = -√(1/2)

    https://purr.purdue.edu/publications/2358

  17. 32-digit values of the first 100 recurrence coefficients for the upper subrange Hermite weight function on [c,Inf], c=√1/2

    2017-01-24 16:31:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NP22FV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x^2) on [c,Inf], c=√1/2

    https://purr.purdue.edu/publications/2376

  18. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/logarithmic singularity with exponent a=1/2 and power b=3

    2016-12-06 21:38:10 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7H70CSK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=1/2, b=3

    https://purr.purdue.edu/publications/2314

  19. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=-1/2 and power b=1

    2017-03-17 16:30:19 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7P26W4C

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=1

    https://purr.purdue.edu/publications/2441

  20. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=1/2 and power b=1

    2017-03-17 18:14:32 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7RV0KQJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=1

    https://purr.purdue.edu/publications/2443

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).