Tags: Walter Gautschi Archives

Datasets (41-60 of 228)

  1. 32-digit values of the first 64 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing a logarithmic singularity

    2017-04-20 18:58:41 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7H1300S

    32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2453

  2. 32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x*exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-20 18:27:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7MS3QRV

    32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=1

    https://purr.purdue.edu/publications/2456

  3. 32-digit values of the first 65 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing a logarithmic singularity

    2017-04-20 15:24:41 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7RJ4GGK

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2450

  4. 32-digit values of the first 62 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing a logarithmic singularity

    2017-04-20 12:12:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7W9575V

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^5*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2471

  5. 32-digit values of the first 63 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing a logarithmic singularity

    2017-04-20 12:06:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70Z719D

    32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^3*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2470

  6. 32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^3*exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-20 12:02:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7S09

    32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=3

    https://purr.purdue.edu/publications/2463

  7. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1/x) on [0,1]

    2017-04-12 13:19:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7639MQT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = 0, b = 1

    https://purr.purdue.edu/publications/2268

  8. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=1/2 and power b=2

    2017-03-30 13:10:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7251G6V

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=2

    https://purr.purdue.edu/publications/2445

  9. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a = -1/2 and power b=3

    2017-03-30 13:08:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R75X26Z9

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=3

    https://purr.purdue.edu/publications/2447

  10. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a =1/2 and power b=3

    2017-03-30 13:06:06 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZN6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=3

    https://purr.purdue.edu/publications/2446

  11. OPQ: A Matlab suite of programs for generating orthogonal polynomials and related quadrature rules

    2017-03-29 14:16:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7959FHP

    This is a set of Matlab codes and data files for generating orthogonal polynomials and related quadrature rules.

    https://purr.purdue.edu/publications/1582

  12. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=1/2 and power b=1

    2017-03-17 18:14:32 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7RV0KQJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=1

    https://purr.purdue.edu/publications/2443

  13. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=-1/2 and power b=2

    2017-03-17 18:13:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7WM1BDT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=2

    https://purr.purdue.edu/publications/2442

  14. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=-1/2 and power b=1

    2017-03-17 16:30:19 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7P26W4C

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=1

    https://purr.purdue.edu/publications/2441

  15. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational argument

    2017-03-17 14:57:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MTX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x)/(1-x)) on [0,1]

    https://purr.purdue.edu/publications/2436

  16. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational square-root argument

    2017-03-17 14:52:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XG9P5S

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x^(1/2))/(1-x^(1/2))) on [0,1]

    https://purr.purdue.edu/publications/2439

  17. 32-digit values of the first 100 recurrence coefficients for the exponential integral weight function E_1 on [0,Inf]

    2017-03-17 13:55:39 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DR2SF2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=E_nu(x) on (0,Inf], nu=1

    https://purr.purdue.edu/publications/2241

  18. 32-digit values of the first 100 recurrence coefficients for a weight function with a logarithmic type singularity

    2017-03-10 15:43:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BR8Q6R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-x^2) on [-1,1]

    https://purr.purdue.edu/publications/2438

  19. Associated Legendre polynomials

    2017-03-10 15:39:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7GH9FZH

    Matlab routines for the first N recurrence coefficients of associated Legendre polynomials

    https://purr.purdue.edu/publications/2437

  20. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters -1/2, 3/2 and exponent -3/4

    2017-03-01 14:56:33 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7833Q1F

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=-1/2, b=3/2, c=-3/4

    https://purr.purdue.edu/publications/2428

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).