Tags: Walter Gautschi Archives

Datasets (141-160 of 228)

  1. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*log(1/x) on [0,1]

    2016-11-21 14:51:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZC80VC

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 0

    https://purr.purdue.edu/publications/2297

  2. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*log(1/x) on [0,1]

    2016-11-21 14:48:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7348HBP

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 0

    https://purr.purdue.edu/publications/2296

  3. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(1/2)*log(1/x) on [0,1]

    2016-11-21 14:39:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76W981N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 1/2

    https://purr.purdue.edu/publications/2295

  4. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^4)^(1/2) on [0,1]

    2016-11-15 19:49:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DN432K

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 0, b = 1/2, c = 4

    https://purr.purdue.edu/publications/2273

  5. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*(1-x^(1/4))^(3/4) on [0,1]

    2016-11-15 19:42:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TR2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 1/2, b = 3/4, c = 1/4

    https://purr.purdue.edu/publications/2272

  6. Loading variable-precision recurrence coefficients

    2016-11-15 19:26:06 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7P26W3X

    Loading a text file of variable-precision recurrence coefficients into Matlab symbolic or double-precision arrays

    https://purr.purdue.edu/publications/2271

  7. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*(1-x^3)^(-1/2) on [0,1]

    2016-11-15 19:19:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MSG

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = -1/2, b = -1/2, c = 3

    https://purr.purdue.edu/publications/2274

  8. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^3 on [0,1]

    2016-11-15 16:17:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XK8CH6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=-1/2, b=3

    https://purr.purdue.edu/publications/2270

  9. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1/x)]^2 on [0,1]

    2016-11-15 16:14:16 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72B8W0H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=0, b=2

    https://purr.purdue.edu/publications/2269

  10. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1/x) on [0,1]

    2016-11-15 16:12:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7639MQT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = 0, b = 1

    https://purr.purdue.edu/publications/2268

  11. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent 1/2

    2016-11-09 20:24:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K935HZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=1/4

    https://purr.purdue.edu/publications/2266

  12. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent -1/2

    2016-11-09 20:05:30 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FN145H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2265

  13. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent 1/2

    2016-11-09 16:30:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZK5DNK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=1/4

    https://purr.purdue.edu/publications/2262

  14. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent -1/2

    2016-11-09 16:16:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q23X6V

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2263

  15. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent 1/2

    2016-11-09 16:15:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TT4NXV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=1/4

    https://purr.purdue.edu/publications/2264

  16. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent -1/2

    2016-11-08 18:52:02 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73B5X4W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2261

  17. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials

    2016-11-08 15:11:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7736NWN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=0

    https://purr.purdue.edu/publications/2260

  18. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials

    2016-11-07 19:58:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BV7DKM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=0

    https://purr.purdue.edu/publications/2259

  19. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials

    2016-11-07 19:57:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7GH9FX2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=0

    https://purr.purdue.edu/publications/2257

  20. 32-digit values of the first 100 recurrence coefficients for lower subrange Jacobi polynomials

    2016-11-03 12:57:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7M906MW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x ) = (1-x)^a*(1+x)^b on [-1,c], c = 0, a = -1/2, b = 1/2

    https://purr.purdue.edu/publications/2254

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).