Tags: Walter Gautschi Archives

Datasets (101-120 of 228)

  1. Lindeloef polynomials

    2017-01-12 17:19:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76M34ST

    Matlab routine for the first N recurrence coefficients of Lindeloef polynomials

    https://purr.purdue.edu/publications/2360

  2. 32-digit values of the first 100 recurrence coefficients for the Plana weight function

    2017-01-12 16:54:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BC3WH5

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|/(exp(2*π*|x|)-1) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2361

  3. 32-digit values of the first 100 recurrence coefficients for the Morse weight function

    2017-01-10 20:36:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7G44N8B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-5*x+6*(exp(-x)-1)] on [0,Inf]

    https://purr.purdue.edu/publications/2347

  4. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c = -1, with exponent 1/2

    2017-01-10 20:34:24 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KW5D16

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = 1/4

    https://purr.purdue.edu/publications/2357

  5. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c=-1, with exponent -1/2

    2017-01-10 18:41:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QN64Q2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = -1/4

    https://purr.purdue.edu/publications/2356

  6. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c = -1, with exponent 0

    2017-01-10 18:28:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V9862X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = 0

    https://purr.purdue.edu/publications/2355

  7. 32-digit values of the first 100 recurrence coefficients for the upper subrange Hermite weight function on [c,Inf], c=-√(1/2)

    2017-01-10 14:59:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7028PHC

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x^2) on [c,Inf], c = -√(1/2)

    https://purr.purdue.edu/publications/2358

  8. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=1

    2017-01-09 19:21:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73T9F6B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=1

    https://purr.purdue.edu/publications/2342

  9. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.005

    2017-01-03 15:57:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74T6GBQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.005

    https://purr.purdue.edu/publications/2346

  10. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.001

    2017-01-03 15:56:02 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78K772F

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.001

    https://purr.purdue.edu/publications/2345

  11. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.1

    2017-01-03 15:54:45 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DB7ZTT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.1

    https://purr.purdue.edu/publications/2343

  12. Meixner-Pollaczek polynomials

    2016-12-14 14:08:32 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R75T3HG3

    Matlab routine for the first N recurrence coefficients of Meixner-Pollaczek polynomials

    https://purr.purdue.edu/publications/2334

  13. Generalized Hermite polynomials

    2016-12-14 14:04:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79K4878

    Matlab routine for the first N recurrence coefficients of generalized Hermite polynomials

    https://purr.purdue.edu/publications/2333

  14. Generalized Laguerre polynomials

    2016-12-14 14:02:34 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K07280

    Matlab routines for the first N recurrence coefficients of generalized Laguerre polynomials

    https://purr.purdue.edu/publications/2332

  15. Jacobi polynomials

    2016-12-14 14:00:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PR7SZ5

    Matlab routines for the first N recurrence coefficients of Jacobi polynomials

    https://purr.purdue.edu/publications/2331

  16. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.001

    2016-12-13 20:55:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TH8JPW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.001

    https://purr.purdue.edu/publications/2330

  17. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.005

    2016-12-13 20:54:37 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z899DM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.005

    https://purr.purdue.edu/publications/2329

  18. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.02

    2016-12-13 20:50:55 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7319SWH

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.02

    https://purr.purdue.edu/publications/2328

  19. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.1

    2016-12-13 20:49:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76T0JNX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.1

    https://purr.purdue.edu/publications/2327

  20. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=1

    2016-12-13 20:47:30 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BK19B6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=1

    https://purr.purdue.edu/publications/2326

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).