Tags: Subrange Hermite polynomials

All Categories (1-12 of 12)

  1. Squared Abel polynomials

    2017-01-26 13:58:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7RZF

    Matlab routine for the first N recurrence coefficients of squared Abel polynomials

    https://purr.purdue.edu/publications/2377

  2. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c = -1, with exponent 1/2

    2017-01-10 20:34:24 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KW5D16

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = 1/4

    https://purr.purdue.edu/publications/2357

  3. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c=-1, with exponent -1/2

    2017-01-10 18:41:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QN64Q2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = -1/4

    https://purr.purdue.edu/publications/2356

  4. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent 1/2

    2016-11-09 20:24:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K935HZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=1/4

    https://purr.purdue.edu/publications/2266

  5. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent -1/2

    2016-11-09 20:05:30 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FN145H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2265

  6. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent 1/2

    2016-11-09 16:30:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZK5DNK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=1/4

    https://purr.purdue.edu/publications/2262

  7. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent -1/2

    2016-11-09 16:16:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q23X6V

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2263

  8. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent 1/2

    2016-11-09 16:15:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TT4NXV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=1/4

    https://purr.purdue.edu/publications/2264

  9. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent -1/2

    2016-11-08 18:52:02 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73B5X4W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2261

  10. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials

    2016-11-08 15:11:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7736NWN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=0

    https://purr.purdue.edu/publications/2260

  11. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials

    2016-11-07 19:58:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BV7DKM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=0

    https://purr.purdue.edu/publications/2259

  12. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials

    2016-11-07 19:57:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7GH9FX2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=0

    https://purr.purdue.edu/publications/2257

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).