Tags: moment-based method

All Categories (1-8 of 8)

  1. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=1/2 and power b=1

    2017-03-17 18:14:32 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7RV0KQJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=1

    https://purr.purdue.edu/publications/2443

  2. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=-1/2 and power b=2

    2017-03-17 18:13:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7WM1BDT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=2

    https://purr.purdue.edu/publications/2442

  3. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=-1/2 and power b=1

    2017-03-17 16:30:19 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7P26W4C

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=1

    https://purr.purdue.edu/publications/2441

  4. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters a=1/3, b=c=1/2, d=-7/6

    2017-01-30 17:18:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7RF5S1T

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=const*x^d*exp(-b/x^a-c*x^a), const=exp(1)/(3*√(2*pi)), a=1/3, b=c=1/2, d=-7/6

    https://purr.purdue.edu/publications/2380

  5. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters 1, 1/2, 1/2, -3/2

    2017-01-30 17:16:39 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7W66HSK

    32-digit values of the first 100 recurrence coefficients for the weight function (inverse Gaussian distribution) w(x)=const*x^d*exp(-b/x^a-c*x^a) on [0,Inf], const=exp(1)/√(2*π), a=1, b=c=1/2, d=-3/2

    https://purr.purdue.edu/publications/2379

  6. 32-digit values of the first 100 recurrence coefficients for the upper subrange Hermite weight function on [c,Inf], c=√1/2

    2017-01-24 16:31:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NP22FV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x^2) on [c,Inf], c=√1/2

    https://purr.purdue.edu/publications/2376

  7. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters 2, 1, 1, 0

    2017-01-20 13:51:06 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7F47M3H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^d*exp(-b/x^a-c*x^a) on [0,Inf], a=2, b=c=1, d=0

    https://purr.purdue.edu/publications/2374

  8. 32-digit values of the first 100 recurrence coefficients for a square-root-logarithmic weight function

    2016-12-01 19:34:26 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NZ85NT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1/x)]^b on [0,1], b=1/2

    https://purr.purdue.edu/publications/2306

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).