Tags: Logarithmic weight functions

All Categories (1-8 of 8)

  1. 32-digit values of the first 100 recurrence coefficients, obtained from modified moments, for the Laguerre weight function multiplied by a logarithmically singular function

    2016-12-09 20:34:48 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7M043CX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2301

  2. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

    2016-12-01 20:27:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78P5XHT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

    https://purr.purdue.edu/publications/2304

  3. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

    2016-12-01 15:42:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SQ8XDM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2302

  4. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2016-11-22 17:01:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZMR

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2298

  5. POEXPINT: Polynomials orthogonal with respect to the exponential integral

    2014-04-28 13:01:06 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7X34VD9

    Matlab scripts for computing orthogonal polynomials whose weight function involves an exponential integral

    https://purr.purdue.edu/publications/1587

  6. RMOP: Repeated modifications of orthogonal polynomials

    2014-04-22 16:42:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7F18WNB

    Matlab routines and data sets that compute repeated modifications of orthogonal polynomials

    https://purr.purdue.edu/publications/1577

  7. OCVdM: Optimally conditioned Vandermonde matrices

    2014-04-22 16:36:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TB14TB

    Matlab routines for computing optimally conditioned Vandermonde matrices

    https://purr.purdue.edu/publications/1573

  8. GQLOG: Matlab routines for computing Gauss Quadrature rules with logarithmic weight functions

    2014-04-22 16:31:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72R3PMB

    Matlab routines for computing Gauss Quadrature rules with logarithmic weight functions

    https://purr.purdue.edu/publications/1571

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).