## Tags: Jacobi weight functions

### All Categories (1-16 of 16)

2017-10-25 12:59:44 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7P26W3X

Loading a text file of variable-precision recurrence coefficients into Matlab symbolic or double-precision arrays

https://purr.purdue.edu/publications/2271

2016-11-15 19:26:06 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7P26W3X

Loading a text file of variable-precision recurrence coefficients into Matlab symbolic or double-precision arrays

https://purr.purdue.edu/publications/2271

3. 32-digit values of the first 100 recurrence coefficients for lower subrange Jacobi polynomials

2016-11-03 12:57:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7M906MW

32-digit values of the first 100 recurrence coefficients for the weight function w(x ) = (1-x)^a*(1+x)^b on [-1,c], c = 0, a = -1/2, b = 1/2

https://purr.purdue.edu/publications/2254

4. 32-digit values of the first 100 recurrence coefficients for upper subrange Jacobi polynomials

2016-11-02 15:58:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7VT1Q2N

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*(1+x)^b on [c,1], c=0, a=-1/2, b=1/2

https://purr.purdue.edu/publications/2255

5. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents -1/2 times a logarithmic factor

2016-10-19 16:03:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FQ9TKW

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=-1/2

https://purr.purdue.edu/publications/2233

6. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent -1/2

2016-10-19 14:03:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q81B2B

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=-1/4

https://purr.purdue.edu/publications/2231

7. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,1/2,32)

2016-10-12 13:51:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79G5JRN

32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{-1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,1/2,32)

https://purr.purdue.edu/publications/1494

8. SOPQ: Symbolic OPQ

2015-12-30 00:00:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZG6Q6T

This includes symbolic versions of some of the more important OPQ routines.

https://purr.purdue.edu/publications/1560

9. CHA: Matlab programs for computing a challenging integral

2014-04-22 16:52:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QJ7F7V

Matlab and FORTRAN codes to evaluate a densely and wildly oscillatory integral that had been proposed as a computational problem in the SIAM 100-Digit Challenge.

https://purr.purdue.edu/publications/1563

10. SRJAC: Sub-range Jacobi polynomials

2014-04-22 16:40:02 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JS9NCR

Matlab routines for computing sub-range Jacobi polynomials within the sub interval of [-1, 1]

https://purr.purdue.edu/publications/1576

11. HOGGRL: High-order generalized Gauss-Radau and Gauss-Lobatto Formulae for Jacobi and Laguerre weight functions

2014-04-22 16:38:33 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7G15XSQ

Matlab source codes and files that compute the high-order Gauss-Radau and Gauss-Lobatto formulae for Jacobi and Laguerre weight functions

https://purr.purdue.edu/publications/1574

12. GQLOG: Matlab routines for computing Gauss Quadrature rules with logarithmic weight functions

2014-04-22 16:31:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72R3PMB

Matlab routines for computing Gauss Quadrature rules with logarithmic weight functions

https://purr.purdue.edu/publications/1571

13. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,1/2,32)

2014-04-22 11:08:37 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79G5JRN

32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{-1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,1/2,32)

https://purr.purdue.edu/publications/1494

14. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,-1/2,32)

2014-04-22 10:38:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SF2T39

32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,-1/2,32)

https://purr.purdue.edu/publications/1498

15. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)

2014-04-22 08:59:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70Z715M

32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)

https://purr.purdue.edu/publications/1491

16. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,1/2,32)

2014-04-22 08:54:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7RWJ

32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,1/2,32)

https://purr.purdue.edu/publications/1500

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).