Tags: Hermite weight function

All Categories (1-14 of 14)

  1. Gauss quadrature and Christoffel function for upper subrange generalized Hermite weight functions

    2020-05-20 14:38:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/CQFR-NB61

    A set of MATLAB scripts related to Gauss quadrature and Christoffel function for upper subrange generalized Hermite weight functions

    https://purr.purdue.edu/publications/3484

  2. Gauss quadrature and Christoffel function for lower subrange generalized Hermite weight functions

    2020-05-20 14:30:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/YT9J-NH66

    A set of MATLAB scripts related to Gauss quadrature and Christoffel function for lower subrange generalized Hermite weight functions

    https://purr.purdue.edu/publications/3481

  3. Gauss quadrature and Christoffel function for symmetric subrange generalized Hermite weight functions

    2020-05-19 20:10:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/5S36-HN83

    A set of MATLAB scripts related to Gauss quadrature and Christoffel function for symmetric subrange generalized Hermite weight functions

    https://purr.purdue.edu/publications/3480

  4. Gauss quadrature and Christoffel function for halfrange generalized Hermite weight functions

    2020-05-19 18:28:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/ZDK5-A567

    A set of MATLAB scripts related to Gauss quadrature and Christoffel function for halfrange generalized Hermite weight functions

    https://purr.purdue.edu/publications/3479

  5. Gauss quadrature and Christoffel function for generalized Hermite weight functions

    2020-04-30 18:39:30 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/KH30-CK23

    A set of MATLAB scripts related to Gauss quadrature and Christoffel function for generalized Hermite weight functions

    https://purr.purdue.edu/publications/3411

  6. 32-digit values of the first 100 recurrence coefficients for the upper subrange Hermite weight function on [c,Inf], c=√1/2

    2017-01-24 16:31:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NP22FV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x^2) on [c,Inf], c=√1/2

    https://purr.purdue.edu/publications/2376

  7. 32-digit values of the first 100 recurrence coefficients for the upper subrange Hermite weight function on [c,Inf], c=-√(1/2)

    2017-01-10 14:59:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7028PHC

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x^2) on [c,Inf], c = -√(1/2)

    https://purr.purdue.edu/publications/2358

  8. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent 1/2

    2016-10-19 14:08:46 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KH0K95

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=1/4

    https://purr.purdue.edu/publications/2232

  9. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent -1/2

    2016-10-19 14:03:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q81B2B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=-1/4

    https://purr.purdue.edu/publications/2231

  10. 32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    2016-10-19 13:22:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7X63JTM

    32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    https://purr.purdue.edu/publications/1490

  11. SOPQ: Symbolic OPQ

    2016-07-07 18:06:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZG6Q6T

    This includes symbolic versions of some of the more important OPQ routines.

    https://purr.purdue.edu/publications/1560

  12. SOPQ: Symbolic OPQ

    2015-12-30 00:00:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZG6Q6T

    This includes symbolic versions of some of the more important OPQ routines.

    https://purr.purdue.edu/publications/1560

  13. HPGT: High-precision Gauss-Turan quadrature rules

    2014-04-22 16:49:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R71V5BW8

    Matlab routines that calculate high-precision Gauss-Turan quadrature rules

    https://purr.purdue.edu/publications/1580

  14. 32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    2014-04-22 08:19:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7X63JTM

    32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    https://purr.purdue.edu/publications/1490

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries and the Office of the Executive Vice President for Research and Partnerships, with support from additional campus partners.