Tags: Gaussian quadrature

Resources (1-20 of 38)

  1. 32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function w(x)=exp(-x)*log(1+1/x) on [0,Inf] with exponent 0

    2017-05-01 13:14:44 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CZ3555

    32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2452

  2. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational square-root argument

    2017-03-17 14:52:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XG9P5S

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x^(1/2))/(1-x^(1/2))) on [0,1]

    https://purr.purdue.edu/publications/2439

  3. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

    2016-12-01 20:27:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78P5XHT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

    https://purr.purdue.edu/publications/2304

  4. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

    2016-12-01 15:42:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SQ8XDM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2302

  5. Gauss quadrature rules

    2016-11-30 17:28:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72805KQ

    Variable-precision Matlab routine for generating the nodes and weights of a Gaussian quadrature rule

    https://purr.purdue.edu/publications/2305

  6. 28-digit values of the recursion coefficients relative to the Bessel weight function w(x)=frac{sqrt{3}}{pi}K_{1/3}(x) on [0,infty]

    2016-11-23 16:16:14 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JW8BS2

    28-digit values of the recursion coefficients for orthogonal polynomials relative to the Bessel weight function w(x)=frac{sqrt{3}}{pi}K_{1/3}(x) on [0,infty]

    https://purr.purdue.edu/publications/1475

  7. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2016-11-22 17:01:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZMR

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2298

  8. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents -1/2 times a logarithmic factor

    2016-10-19 16:03:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FQ9TKW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=-1/2

    https://purr.purdue.edu/publications/2233

  9. 32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    2016-10-19 13:22:38 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7X63JTM

    32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

    https://purr.purdue.edu/publications/1490

  10. 32-digit values of the first 100 recurrence coefficients using the Bose-Einstein weight function: w(x)=[x/(e^x-1)]^4 computed by the SOPQ routine sr_boseeinstein(100,4,32)

    2016-10-17 13:19:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7000013

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials using the Bose-Einstein weight function: w(x)=[x/(e^x-1)]^4 computed by the SOPQ routine sr_boseeinstein(100,4,32)

    https://purr.purdue.edu/publications/1480

  11. 32-digit values of the first 100 recurrence coefficients relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^3 computed by the SOPQ routine sr_boseeinstein(100,3,32)

    2016-10-17 13:17:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73R0QRQ

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^3 computed by the routine sr_boseeinstein(100,3,32)

    https://purr.purdue.edu/publications/1479

  12. 32-digit values of the first 100 recurrence coefficients relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^2 computed by the SOPQ routine sr_boseeinstein(100,2,32)

    2016-10-13 19:21:14 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R77H1GGF

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Bose-Einstein weight function w(x)=[x/(e^x-1)]^2 computed by the SOPQ routine sr_boseeinstein(100,2,32)

    https://purr.purdue.edu/publications/1478

  13. 32-digit values of the first 100 recurrence coefficients relative to the Bose-Einstein weight function w(x)=x/(e^x-1) computed by the SOPQ routine sr_boseeinstein(100,1,32)

    2016-10-13 16:31:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7H12ZX3

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Bose-Einstein weight function w(x)=x/(e^x-1) computed by the SOPQ routine sr_boseeinstein(100,1,32)

    https://purr.purdue.edu/publications/1476

  14. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^8) computed on R by the SOPQ routine sr_freud(100,0,8,32)

    2016-10-13 15:36:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TD9V74

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^8) computed on R by the SOPQ routine sr_freud(100,0,8,32)

    https://purr.purdue.edu/publications/1489

  15. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^4) computed on R by the SOPQ routine sr_freud(100,0,4,32)

    2016-10-13 15:22:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PN93HS

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^4) computed on R by the SOPQ routine sr_freud(100,0,4,32)

    https://purr.purdue.edu/publications/1487

  16. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^{10}) computed on R by the SOPQ routine sr_freud(100,0,10,32)

    2016-10-13 14:51:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7F769GC

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^{10}) computed on R by the SOPQ routine sr_freud(100,0,10,32)

    https://purr.purdue.edu/publications/1486

  17. 32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^6) computed on R by the SOPQ routine sr_freud(100,0,6,32)

    2016-10-12 17:23:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z60KZ0

    32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^6) computed on R by the SOPQ routine sr_freud(100,0,6,32)

    https://purr.purdue.edu/publications/1488

  18. 32-digit values of the first 100 recurrence coefficients relative to the Theodorus weight function w(x)=x^{1/2}/(e^x-1) on R_{+} computed by the routine sr_theodorus(100,32)

    2016-10-12 13:01:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R71Z4290

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Theodorus weight function w(x)=x^{1/2}/(e^x-1) on R_{+} computed by the routine sr_theodorus(100,32)

    https://purr.purdue.edu/publications/1472

  19. 32-digit values of the first 100 recurrence coefficients relative to the Fermi-Dirac weight function w(x)=1/(e^x+1) computed by the SOPQ routine sr_fermidirac(100,1,32)

    2016-10-11 15:06:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7C82765

    32-digit values of the first 100 recurrence coefficients relative to the Fermi-Dirac weight function w(x)=1/(e^x+1) computed by the SOPQ routine sr_fermidirac(100,1,32)

    https://purr.purdue.edu/publications/1481

  20. POEXPINT: Polynomials orthogonal with respect to the exponential integral

    2014-04-28 13:01:06 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7X34VD9

    Matlab scripts for computing orthogonal polynomials whose weight function involves an exponential integral

    https://purr.purdue.edu/publications/1587

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).