Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a = -1/2 and power b=3

    2017-04-24 12:42:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R75X26Z9

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=3

    https://purr.purdue.edu/publications/2447

  2. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a =1/2 and power b=3

    2017-04-24 12:39:08 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZN6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=3

    https://purr.purdue.edu/publications/2446

  3. OPQ: A Matlab suite of programs for generating orthogonal polynomials and related quadrature rules

    2017-03-29 14:22:17 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7959FHP

    This is a set of Matlab codes and data files for generating orthogonal polynomials and related quadrature rules.

    https://purr.purdue.edu/publications/1582

  4. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=1/2 and power b=1

    2017-03-23 15:05:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7RV0KQJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=1

    https://purr.purdue.edu/publications/2443

  5. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=-1/2 and power b=2

    2017-03-23 15:04:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7WM1BDT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=2

    https://purr.purdue.edu/publications/2442

  6. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=-1/2 and power b=1

    2017-03-23 15:03:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7P26W4C

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=1

    https://purr.purdue.edu/publications/2441

  7. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational argument

    2017-03-23 15:01:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MTX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x)/(1-x)) on [0,1]

    https://purr.purdue.edu/publications/2436

  8. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational square-root argument

    2017-03-23 14:59:26 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XG9P5S

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x^(1/2))/(1-x^(1/2))) on [0,1]

    https://purr.purdue.edu/publications/2439

  9. 32-digit values of the first 100 recurrence coefficients for the exponential integral weight function E_1 on [0,Inf]

    2017-03-23 15:00:34 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72805M5

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=E_nu(x) on (0,Inf], nu=1

    https://purr.purdue.edu/publications/2241

  10. 32-digit values of the first 100 recurrence coefficients for a weight function with a logarithmic type singularity

    2017-03-22 22:01:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BR8Q6R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-x^2) on [-1,1]

    https://purr.purdue.edu/publications/2438

  11. Associated Legendre polynomials

    2017-03-22 22:03:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7GH9FZH

    Matlab routines for the first N recurrence coefficients of associated Legendre polynomials

    https://purr.purdue.edu/publications/2437

  12. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters -1/2, 3/2 and exponent -3/4

    2017-03-10 15:52:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7833Q1F

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=-1/2, b=3/2, c=-3/4

    https://purr.purdue.edu/publications/2428

  13. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters -1/2, 3/2 and exponent 1

    2017-03-10 15:51:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CV4FQ0

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=-1/2, b=3/2, c=1

    https://purr.purdue.edu/publications/2427

  14. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters 3/2, -1/2 and exponent 1

    2017-03-10 15:50:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HM56FQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=3/2, b=-1/2, c=1

    https://purr.purdue.edu/publications/2426

  15. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters 3/2, -1/2 and exponent -3/4

    2017-03-10 15:49:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NC5Z6H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=3/2, b=-1/2, c=-3/4

    https://purr.purdue.edu/publications/2429

  16. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=16/3

    2017-03-10 15:47:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PC30CQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=16/3

    https://purr.purdue.edu/publications/2421

  17. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=8/3

    2017-03-10 15:47:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7T43R2M

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=8/3

    https://purr.purdue.edu/publications/2420

  18. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=4/3

    2017-03-10 15:46:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XS5SDR

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=4/3

    https://purr.purdue.edu/publications/2418

  19. Generalized Gegenbauer polynomials

    2017-03-03 19:33:10 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73J39ZH

    Matlab routine for the first N recurrence coefficients of generalized Gegenbauer polynomials

    https://purr.purdue.edu/publications/2416

  20. The first 100 recurrence coefficients for cardinal Bspline weight functions of order m=[1:10 12 15 20]

    2017-02-27 13:34:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R77942P7

    The first 100 recurrence coefficients for the weight function w(x)=φ_m(x), m=1, 2, . . . , 10, 12, 15, 20

    https://purr.purdue.edu/publications/2415

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).