Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for the half-range Binet weight function

    2017-08-14 16:39:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PC30HH

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2538

  2. 32-digit values of the first 100 recurrence coefficients for the square Binet weight function

    2017-08-14 16:43:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KW5D2N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1-exp(-|x|))]^2 on [-Inf, Inf]

    https://purr.purdue.edu/publications/2593

  3. 32-digit values of the first 200 recurrence coefficients for the weight function w(x)=[log(1/x)]^2 on [0,1]

    2017-08-14 16:36:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7W95769

    32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=0, b=2

    https://purr.purdue.edu/publications/2269

  4. 32-digit values of the first 100 recurrence coefficients for a Binet-like weight function

    2017-05-31 12:22:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73B5X5B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1+exp(-abs(x))) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2521

  5. 32-digit values of the first 100 recurrence coefficients for a half-range Binet-like weight function

    2017-05-24 19:24:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7736NX3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1+exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2522

  6. 32-digit values of the first 64 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 1

    2017-05-10 19:23:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72J68W1

    32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=1

    https://purr.purdue.edu/publications/2494

  7. 32-digit values of the first 63 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 3

    2017-05-10 19:22:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79Z92XF

    32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=3

    https://purr.purdue.edu/publications/2495

  8. 32-digit values of the first 62 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 5

    2017-05-10 19:22:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FQ9TMB

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=5

    https://purr.purdue.edu/publications/2496

  9. 32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 1/2

    2017-05-10 19:21:21 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KH0KBM

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=1/2

    https://purr.purdue.edu/publications/2497

  10. 32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent -1/2

    2017-05-10 18:44:21 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q81B3S

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2498

  11. 32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function w(x)=exp(-x)*log(1+1/x) on [0,Inf] with exponent 0

    2017-05-10 18:40:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CZ3555

    32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2452

  12. 32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*log(1+1/x) on [1,Inf]

    2017-05-09 13:49:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PG1PR6

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=1/2

    https://purr.purdue.edu/publications/2489

  13. 32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*log(1+1/x) on [1,Inf]

    2017-05-09 13:48:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZW1HX0

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=-1/2

    https://purr.purdue.edu/publications/2488

  14. 32-digit values of the first 65 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing an algebraic singularity with exponent 1/2 and exponential/logarithmic factors

    2017-05-09 13:48:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JS9NFN

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2477

  15. 32-digit values of the first 65 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing an algebraic singularity with exponent -1/2 and exponential/logarithmic factors

    2017-05-09 13:47:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KS6PK1

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2469

  16. 32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^(-1/2)*log(1/x) on [0,1]

    2017-04-24 18:00:21 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QJ7FB6

    32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=-1/2, b=1

    https://purr.purdue.edu/publications/2291

  17. 32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^(1/2)*log(1/x) on [0,1]

    2017-04-24 17:59:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V9863C

    32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=1/2, b=1

    https://purr.purdue.edu/publications/2290

  18. 32-digit values of the first 65 recurrence coefficients for the weight function w(x)=exp(-x)*log(1+1/x) on [1,Inf]

    2017-05-09 13:46:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7028PJT

    32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=0

    https://purr.purdue.edu/publications/2451

  19. 32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^5*exp(-x)*log(1+1/x) on [1,Inf]

    2017-05-09 13:39:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73R0QWH

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=5

    https://purr.purdue.edu/publications/2462

  20. 32-digit values of the first 64 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing a logarithmic singularity

    2017-04-27 13:50:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7H1300S

    32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2453

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).