PURR will have scheduled maintenance work on Tuesday, December 17, 2024. The platform will operate normally for most of the day, except for a short 30-minute interruption during night, sometime between 8 PM and 3 AM (EDT). Please plan accordingly and we do apologize for any inconvenience.
close

Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for a Binet-like weight function

    2017-05-31 12:22:27 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R73B5X5B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1+exp(-abs(x))) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2521

  2. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters 1, 1/2, 1/2, -3/2

    2017-02-14 15:13:15 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7W66HSK

    32-digit values of the first 100 recurrence coefficients for the weight function (inverse Gaussian distribution) w(x)=const*x^d*exp(-b/x^a-c*x^a) on [0,Inf], const=exp(1)/√(2*π), a=1, b=c=1/2, d=-3/2

    https://purr.purdue.edu/publications/2379

  3. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters 2, 1, 1, 0

    2017-01-30 17:30:03 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7F47M3H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^d*exp(-b/x^a-c*x^a) on [0,Inf], a=2, b=c=1, d=0

    https://purr.purdue.edu/publications/2374

  4. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters a=1/3, b=c=1/2, d=-7/6

    2017-02-14 15:17:26 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7RF5S1T

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=const*x^d*exp(-b/x^a-c*x^a), const=exp(1)/(3*√(2*pi)), a=1/3, b=c=1/2, d=-7/6

    https://purr.purdue.edu/publications/2380

  5. 32-digit values of the first 100 recurrence coefficients for a Gaussian weight function with parameters 1/2 and -1

    2017-02-03 20:31:06 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7D50JZ8

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-a(x-x0)^2) on [0,Inf], with a=1/2, x0=-1

    https://purr.purdue.edu/publications/2373

  6. 32-digit values of the first 100 recurrence coefficients for a Gaussian weight function with parameters 1/2 and 1

    2017-02-03 20:28:33 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7HX19PP

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-a(x-x0)^2) on [0,Inf], with a=1/2, x0=1

    https://purr.purdue.edu/publications/2372

  7. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=2 multiplied by an exponential function with coefficient a=8

    2017-02-27 13:28:05 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R78913V2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=2, a=8

    https://purr.purdue.edu/publications/2411

  8. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=4 multiplied by an exponential function with coefficient a=8

    2017-02-27 13:29:22 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R74J0C39

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=4, a=8

    https://purr.purdue.edu/publications/2412

  9. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=8 multiplied by an exponential function with coefficient a=-8

    2017-02-27 13:31:33 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7W093W1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=8, a=-8

    https://purr.purdue.edu/publications/2414

  10. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=8 multiplied by an exponential function with coefficient a=8

    2017-02-27 13:30:21 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R70R9MC1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=8, a=8

    https://purr.purdue.edu/publications/2413

  11. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters -1/2, 3/2 and exponent -3/4

    2017-03-10 15:52:03 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7833Q1F

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=-1/2, b=3/2, c=-3/4

    https://purr.purdue.edu/publications/2428

  12. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters -1/2, 3/2 and exponent 1

    2017-03-10 15:51:01 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7CV4FQ0

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=-1/2, b=3/2, c=1

    https://purr.purdue.edu/publications/2427

  13. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters 3/2, -1/2 and exponent -3/4

    2017-03-10 15:49:47 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7NC5Z6H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=3/2, b=-1/2, c=-3/4

    https://purr.purdue.edu/publications/2429

  14. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters 3/2, -1/2 and exponent 1

    2017-03-10 15:50:23 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7HM56FQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=3/2, b=-1/2, c=1

    https://purr.purdue.edu/publications/2426

  15. 32-digit values of the first 100 recurrence coefficients for a half-range Binet-like weight function

    2017-05-24 19:24:52 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7736NX3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1+exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2522

  16. 32-digit values of the first 100 recurrence coefficients for a half-range hyperexponential weight function

    2017-02-27 13:24:11 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7JQ0Z1W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-exp(x)) on [0,Inf]

    https://purr.purdue.edu/publications/2399

  17. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational square-root argument

    2017-03-23 14:59:26 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7XG9P5S

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x^(1/2))/(1-x^(1/2))) on [0,1]

    https://purr.purdue.edu/publications/2439

  18. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational argument

    2017-03-23 15:01:49 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7ST7MTX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x)/(1-x)) on [0,1]

    https://purr.purdue.edu/publications/2436

  19. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 1/10

    2017-02-27 13:22:52 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7Z03656

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/10

    https://purr.purdue.edu/publications/2397

  20. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 1/2

    2017-02-27 13:20:19 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R72R3PP7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/2

    https://purr.purdue.edu/publications/2396

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries and the Office of the Executive Vice President for Research and Partnerships, with support from additional campus partners.
In accordance with Purdue policies, all persons have equal access to Purdue University’s educational programs, services and activities, without regard to race, religion, color, sex, age, national origin or ancestry, genetic information, marital status, parental status, sexual orientation, gender identity and expression, disability or status as a veteran. See Purdue’s Nondiscrimination Policy Statement. If you have any questions or concerns regarding these policies, please contact the Office of the Vice President for Ethics and Compliance at vpec@purdue.edu or 765-494-5830.