Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.02

    2017-01-03 15:19:10 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7319SWH

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.02

    https://purr.purdue.edu/publications/2328

  2. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.1

    2017-01-03 15:17:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76T0JNX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.1

    https://purr.purdue.edu/publications/2327

  3. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=1

    2017-01-03 15:20:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BK19B6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=1

    https://purr.purdue.edu/publications/2326

  4. 32-digit values of the first 100 recurrence coefficients for the Binet weight function

    2017-10-24 11:59:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PC30JZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2533

  5. 32-digit values of the first 100 recurrence coefficients for the coerror weight function

    2016-10-26 13:54:02 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R71J97Q6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=erfc(x) on [0,Inf]

    https://purr.purdue.edu/publications/2245

  6. 32-digit values of the first 100 recurrence coefficients for the exponential integral weight function E_1 on [0,Inf]

    2017-03-23 15:00:34 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72805M5

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=E_nu(x) on (0,Inf], nu=1

    https://purr.purdue.edu/publications/2241

  7. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac-type weight function with exponent r=2

    2016-12-09 14:37:41 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R77S7KR9

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=2

    https://purr.purdue.edu/publications/2318

  8. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac-type weight function with exponent r=3

    2017-01-13 14:06:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7VH5KT8

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=3

    https://purr.purdue.edu/publications/2319

  9. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac-type weight function with exponent r=4

    2016-12-09 14:47:33 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R708639Z

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=4

    https://purr.purdue.edu/publications/2320

  10. 32-digit values of the first 100 recurrence coefficients for the finite-range exponential integral weight function on [0,16]

    2016-10-26 13:58:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7WS8R7X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=E_nu(x) on (0,c], nu=1, c=16

    https://purr.purdue.edu/publications/2244

  11. 32-digit values of the first 100 recurrence coefficients for the finite-range exponential integral weight function on [0,1]

    2016-10-26 14:04:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79021RG

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=E_nu(x) on (0,c], nu=1, c=1

    https://purr.purdue.edu/publications/2242

  12. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 3

    2017-02-27 13:25:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HT2M9T

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^μ*exp(-|x|^ν) on [-Inf,Inf], μ=0, ν=3

    https://purr.purdue.edu/publications/2409

  13. 32-digit values of the first 100 recurrence coefficients for the generalized Binet weight function with parameter 1/2

    2017-10-23 13:09:14 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZW1J3N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-a*exp(-|x|)) on [-Inf,Inf], a = 1/2

    https://purr.purdue.edu/publications/2838

  14. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.001

    2017-01-13 13:51:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78K772F

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.001

    https://purr.purdue.edu/publications/2345

  15. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.005

    2017-01-13 13:53:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74T6GBQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.005

    https://purr.purdue.edu/publications/2346

  16. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.02

    2017-01-13 14:05:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7J38QH3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.02

    https://purr.purdue.edu/publications/2344

  17. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.1

    2017-01-13 13:50:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DB7ZTT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.1

    https://purr.purdue.edu/publications/2343

  18. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=1

    2017-01-13 13:55:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73T9F6B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=1

    https://purr.purdue.edu/publications/2342

  19. 32-digit values of the first 100 recurrence coefficients for the half-range Binet weight function

    2017-08-14 16:39:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PC30HH

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2538

  20. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 10

    2017-10-23 16:05:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72N50FJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=10

    https://purr.purdue.edu/publications/2846

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).