Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for a Binet-like weight function

    2017-05-31 12:22:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73B5X5B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1+exp(-abs(x))) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2521

  2. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters 1, 1/2, 1/2, -3/2

    2017-02-14 15:13:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7W66HSK

    32-digit values of the first 100 recurrence coefficients for the weight function (inverse Gaussian distribution) w(x)=const*x^d*exp(-b/x^a-c*x^a) on [0,Inf], const=exp(1)/√(2*π), a=1, b=c=1/2, d=-3/2

    https://purr.purdue.edu/publications/2379

  3. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters 2, 1, 1, 0

    2017-01-30 17:30:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7F47M3H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^d*exp(-b/x^a-c*x^a) on [0,Inf], a=2, b=c=1, d=0

    https://purr.purdue.edu/publications/2374

  4. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters a=1/3, b=c=1/2, d=-7/6

    2017-02-14 15:17:26 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7RF5S1T

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=const*x^d*exp(-b/x^a-c*x^a), const=exp(1)/(3*√(2*pi)), a=1/3, b=c=1/2, d=-7/6

    https://purr.purdue.edu/publications/2380

  5. 32-digit values of the first 100 recurrence coefficients for a Gaussian weight function with parameters 1/2 and -1

    2017-02-03 20:31:06 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7D50JZ8

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-a(x-x0)^2) on [0,Inf], with a=1/2, x0=-1

    https://purr.purdue.edu/publications/2373

  6. 32-digit values of the first 100 recurrence coefficients for a Gaussian weight function with parameters 1/2 and 1

    2017-02-03 20:28:33 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HX19PP

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-a(x-x0)^2) on [0,Inf], with a=1/2, x0=1

    https://purr.purdue.edu/publications/2372

  7. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=2 multiplied by an exponential function with coefficient a=8

    2017-02-27 13:28:05 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78913V2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=2, a=8

    https://purr.purdue.edu/publications/2411

  8. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=4 multiplied by an exponential function with coefficient a=8

    2017-02-27 13:29:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74J0C39

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=4, a=8

    https://purr.purdue.edu/publications/2412

  9. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=8 multiplied by an exponential function with coefficient a=-8

    2017-02-27 13:31:33 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7W093W1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=8, a=-8

    https://purr.purdue.edu/publications/2414

  10. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=8 multiplied by an exponential function with coefficient a=8

    2017-02-27 13:30:21 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70R9MC1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=8, a=8

    https://purr.purdue.edu/publications/2413

  11. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters -1/2, 3/2 and exponent -3/4

    2017-03-10 15:52:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7833Q1F

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=-1/2, b=3/2, c=-3/4

    https://purr.purdue.edu/publications/2428

  12. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters -1/2, 3/2 and exponent 1

    2017-03-10 15:51:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CV4FQ0

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=-1/2, b=3/2, c=1

    https://purr.purdue.edu/publications/2427

  13. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters 3/2, -1/2 and exponent -3/4

    2017-03-10 15:49:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NC5Z6H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=3/2, b=-1/2, c=-3/4

    https://purr.purdue.edu/publications/2429

  14. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters 3/2, -1/2 and exponent 1

    2017-03-10 15:50:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HM56FQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=3/2, b=-1/2, c=1

    https://purr.purdue.edu/publications/2426

  15. 32-digit values of the first 100 recurrence coefficients for a half-range Binet-like weight function

    2017-05-24 19:24:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7736NX3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1+exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2522

  16. 32-digit values of the first 100 recurrence coefficients for a half-range hyperexponential weight function

    2017-02-27 13:24:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JQ0Z1W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-exp(x)) on [0,Inf]

    https://purr.purdue.edu/publications/2399

  17. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational square-root argument

    2017-03-23 14:59:26 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XG9P5S

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x^(1/2))/(1-x^(1/2))) on [0,1]

    https://purr.purdue.edu/publications/2439

  18. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational argument

    2017-03-23 15:01:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MTX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x)/(1-x)) on [0,1]

    https://purr.purdue.edu/publications/2436

  19. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 1/10

    2017-02-27 13:22:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z03656

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/10

    https://purr.purdue.edu/publications/2397

  20. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 1/2

    2017-02-27 13:20:19 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72R3PP7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/2

    https://purr.purdue.edu/publications/2396

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).