Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 10

    2017-02-27 13:18:48 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76H4FFD

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=10

    https://purr.purdue.edu/publications/2395

  2. 32-digit values of the first 100 recurrence coefficients for a square-root-logarithmic weight function

    2016-12-06 19:17:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NZ85NT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1/x)]^b on [0,1], b=1/2

    https://purr.purdue.edu/publications/2306

  3. 32-digit values of the first 100 recurrence coefficients for a symmetric hyperexponential weight function

    2017-02-14 15:24:26 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KP804N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-exp(|x|)) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2400

  4. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a = -1/2 and power b=3

    2017-04-24 12:42:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R75X26Z9

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=3

    https://purr.purdue.edu/publications/2447

  5. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a =1/2 and power b=3

    2017-04-24 12:39:08 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZN6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=3

    https://purr.purdue.edu/publications/2446

  6. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=-1/2 and power b=2

    2017-03-23 15:04:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7WM1BDT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=2

    https://purr.purdue.edu/publications/2442

  7. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=1/2 and power b=2

    2017-04-24 12:51:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7251G6V

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=2

    https://purr.purdue.edu/publications/2445

  8. 32-digit values of the first 100 recurrence coefficients for a weight function with a logarithmic type singularity

    2017-03-22 22:01:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BR8Q6R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-x^2) on [-1,1]

    https://purr.purdue.edu/publications/2438

  9. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials

    2016-11-08 18:47:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BV7DKM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=0

    https://purr.purdue.edu/publications/2259

  10. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent -1/2

    2017-01-10 19:58:17 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q23X6V

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2263

  11. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent 1/2

    2016-11-10 14:41:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TT4NXV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=1/4

    https://purr.purdue.edu/publications/2264

  12. 32-digit values of the first 100 recurrence coefficients for lower subrange Jacobi polynomials

    2017-01-10 20:00:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7M906MW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x ) = (1-x)^a*(1+x)^b on [-1,c], c = 0, a = -1/2, b = 1/2

    https://purr.purdue.edu/publications/2254

  13. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials

    2016-11-22 13:56:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7GH9FX2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=0

    https://purr.purdue.edu/publications/2257

  14. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent -1/2

    2017-01-10 20:02:55 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73B5X4W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2261

  15. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent 1/2

    2016-11-10 14:36:46 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZK5DNK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=1/4

    https://purr.purdue.edu/publications/2262

  16. 32-digit values of the first 100 recurrence coefficients for symmetric subrange Jacobi polynomials

    2017-01-10 19:59:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7R20ZB7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*(1+x)^b on [-c,c], c=1/2, a=-1/2, b=1/2

    https://purr.purdue.edu/publications/2251

  17. 32-digit values of the first 100 recurrence coefficients for the 10th-order cardinal B-spline weight function

    2016-11-02 17:47:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70K26JX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=phi_m(x) on [0,m], m=10

    https://purr.purdue.edu/publications/2250

  18. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.001

    2017-01-03 15:19:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TH8JPW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.001

    https://purr.purdue.edu/publications/2330

  19. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.005

    2017-01-03 15:18:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z899DM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.005

    https://purr.purdue.edu/publications/2329

  20. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.02

    2017-01-03 15:19:10 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7319SWH

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.02

    https://purr.purdue.edu/publications/2328

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).