Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2016-11-30 16:51:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JH3J5S

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

    https://purr.purdue.edu/publications/2240

  2. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-.999*x^2)*(1-x^2)]^(-1/2) on [-1,1]

    2016-11-23 19:40:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7N877RQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=.999

    https://purr.purdue.edu/publications/2247

  3. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-x^2/2)*(1-x^2)]^(-1/2) on [-1,1]

    2016-11-22 16:59:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HH6H1D

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=1/2

    https://purr.purdue.edu/publications/2248

  4. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials

    2017-01-10 20:01:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7736NWN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=0

    https://purr.purdue.edu/publications/2260

  5. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent -1/2

    2016-11-10 14:35:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FN145H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2265

  6. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent 1/2

    2017-01-10 20:04:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K935HZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=1/4

    https://purr.purdue.edu/publications/2266

  7. 32-digit values of the first 100 recurrence coefficients for upper subrange Jacobi polynomials

    2016-11-02 18:24:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7VT1Q2N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*(1+x)^b on [c,1], c=0, a=-1/2, b=1/2

    https://purr.purdue.edu/publications/2255

  8. 32-digit values of the first 100 recurrence coefficients, obtained by discretization, for a radiative transfer weight function with parameter c=2/3

    2017-01-13 14:07:19 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CF9N35

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=2/3

    https://purr.purdue.edu/publications/2316

  9. 32-digit values of the first 100 recurrence coefficients, obtained from modified moments, for the Laguerre weight function multiplied by a logarithmically singular function

    2016-12-12 16:06:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7M043CX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2301

  10. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=2/3

    2016-12-08 13:26:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7N014H9

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=2/3

    https://purr.purdue.edu/publications/2315

  11. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=16/3

    2017-03-10 15:47:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PC30CQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=16/3

    https://purr.purdue.edu/publications/2421

  12. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=4/3

    2017-03-10 15:46:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XS5SDR

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=4/3

    https://purr.purdue.edu/publications/2418

  13. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=8/3

    2017-03-10 15:47:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7T43R2M

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=8/3

    https://purr.purdue.edu/publications/2420

  14. 32-digit values of the first 200 recurrence coefficients for the weight function w(x)=log(1/x) on [0,1]

    2017-04-20 16:38:39 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QN64RH

    32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = 0, b = 1

    https://purr.purdue.edu/publications/2268

  15. 32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^(-1/2)*log(1/x) on [0,1]

    2017-04-24 18:00:21 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QJ7FB6

    32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=-1/2, b=1

    https://purr.purdue.edu/publications/2291

  16. 32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^(1/2)*log(1/x) on [0,1]

    2017-04-24 17:59:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V9863C

    32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=1/2, b=1

    https://purr.purdue.edu/publications/2290

  17. 32-digit values of the first 200 recurrence coefficients for the weight function w(x)=[log(1/x)]^2 on [0,1]

    2017-08-14 16:36:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7W95769

    32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=0, b=2

    https://purr.purdue.edu/publications/2269

  18. 32-digit values of the first 62 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing a logarithmic singularity

    2017-04-27 13:35:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7W9575V

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^5*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2471

  19. 32-digit values of the first 62 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 5

    2017-05-10 19:22:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FQ9TMB

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=5

    https://purr.purdue.edu/publications/2496

  20. 32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^5*exp(-x)*log(1+1/x) on [1,Inf]

    2017-05-09 13:39:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73R0QWH

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=5

    https://purr.purdue.edu/publications/2462

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).