Datasets: All

  1. 28-digit values of the recursion coefficients relative to the Airy weight function w(x)= frac{2^{2/3}pi}{3^{5/6}Gamma(2/3)} *x^{-2/3}exp(-x)Ai((3x/2)^{2/3}) on [0,infty]

    2014-03-21 12:01:01 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7QN64N5

    28-digit values of the recursion coefficients for orthogonal polynomials relative to the Airy weight function w(x)= frac{2^{2/3}pi}{3^{5/6}Gamma(2/3)} *x^{-2/3}exp(-x)Ai((3x/2)^{2/3}) on [0,infty]

    https://purr.purdue.edu/publications/1474

  2. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational square-root argument

    2017-03-23 14:59:26 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7XG9P5S

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x^(1/2))/(1-x^(1/2))) on [0,1]

    https://purr.purdue.edu/publications/2439

  3. 32-digit values of the first 100 recurrence coefficients for a modified Bessel weight function

    2016-11-23 19:39:58 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R73F4MKN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=c*K_nu(x) on [0,Inf], c=2cos(nu*pi/2)/pi, nu=1/3

    https://purr.purdue.edu/publications/1475

  4. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein weight function

    2016-11-30 16:48:34 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7MG7MGF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=1

    https://purr.purdue.edu/publications/1476

  5. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 2

    2016-11-30 16:49:07 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7GQ6VQ8

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=2

    https://purr.purdue.edu/publications/1478

  6. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 3

    2016-11-29 13:20:09 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7BZ640B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=3

    https://purr.purdue.edu/publications/1479

  7. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 4

    2016-11-29 13:20:40 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7765C8X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=4

    https://purr.purdue.edu/publications/1480

  8. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac weight function

    2016-11-29 13:32:22 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7HQ3WW3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=1

    https://purr.purdue.edu/publications/1481

  9. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 10

    2016-11-29 13:24:20 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R74F1NPK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [-Inf,Inf], mu=0, nu=10

    https://purr.purdue.edu/publications/1486

  10. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 4

    2016-11-29 13:21:13 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7VX0DHD

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [-Inf,Inf], mu=0, nu=4

    https://purr.purdue.edu/publications/1487

  11. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 6

    2016-11-29 13:22:11 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R70P0X0Q

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [-Inf,Inf], mu=0, nu=6

    https://purr.purdue.edu/publications/1488

  12. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 8

    2016-11-29 13:23:13 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7R78C5Q

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [-Inf,Inf], mu=0, nu=8

    https://purr.purdue.edu/publications/1489

  13. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent 0

    2016-11-29 15:07:32 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7ZP443R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=0

    https://purr.purdue.edu/publications/1490

  14. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents -1/2 times a logarithmic factor

    2016-10-21 13:05:28 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7FQ9TKW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=-1/2

    https://purr.purdue.edu/publications/2233

  15. 32-digit values of the first 100 recurrence coefficients for the Theodorus weight function

    2016-11-29 13:54:00 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7CZ354Q

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)/(exp(x)-1) on [0,Inf]

    https://purr.purdue.edu/publications/1472

  16. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

    2016-12-05 18:01:58 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7SQ8XDM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2302

  17. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2017-01-10 20:09:23 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R79P2ZMR

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2298

  18. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

    2016-12-05 18:05:47 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R78P5XHT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

    https://purr.purdue.edu/publications/2304

  19. 32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function w(x)=exp(-x)*log(1+1/x) on [0,Inf] with exponent 0

    2017-05-10 18:40:29 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/R7CZ3555

    32-digit values of the first 65 recurrence coefficients for the Krylov-Pal'tsev weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2452

  20. Gauss quadrature and Christoffel function for a Binet-like weight function

    2020-05-23 18:27:07 | Datasets | Contributor(s): Walter GautschiORCID logo | doi:10.4231/YSMS-5A34

    A set of MATLAB scripts related to Gauss quadrature and Christoffel function for a Binet-like weight function

    https://purr.purdue.edu/publications/3460

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries and the Office of the Executive Vice President for Research and Partnerships, with support from additional campus partners.
In accordance with Purdue policies, all persons have equal access to Purdue University’s educational programs, services and activities, without regard to race, religion, color, sex, age, national origin or ancestry, genetic information, marital status, parental status, sexual orientation, gender identity and expression, disability or status as a veteran. See Purdue’s Nondiscrimination Policy Statement. If you have any questions or concerns regarding these policies, please contact the Office of the Vice President for Ethics and Compliance at vpec@purdue.edu or 765-494-5830.