Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 8

    2017-10-23 16:04:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76D5R5W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=8

    https://purr.purdue.edu/publications/2845

  2. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponents mu=0, nu=4

    2016-12-09 14:38:17 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7416V2R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=4

    https://purr.purdue.edu/publications/2321

  3. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponents mu=0, nu=3

    2017-02-27 13:26:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7D21VMV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^μ*exp(-x^ν) on [0,Inf], μ=0, ν=3

    https://purr.purdue.edu/publications/2410

  4. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Binet weight function with parameter 1/2

    2017-10-23 15:04:28 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QC01NW

    32-digit values of the first 100 recurrence coefficients for the half-range generalized Binet weight function w(x)=-log(1-a*exp(-x)) on [0,Inf], a = 1/2

    https://purr.purdue.edu/publications/2840

  5. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent -1/2

    2016-11-29 15:05:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q81B2B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=-1/4

    https://purr.purdue.edu/publications/2231

  6. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent 0

    2016-11-29 15:07:32 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZP443R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=0

    https://purr.purdue.edu/publications/1490

  7. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent 1/2

    2016-11-29 15:04:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KH0K95

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=1/4

    https://purr.purdue.edu/publications/2232

  8. 32-digit values of the first 100 recurrence coefficients for the half-range squared Binet weight function

    2017-10-23 15:57:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KK98Z2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2841

  9. 32-digit values of the first 100 recurrence coefficients for the half-range squared generalized Binet weight function with parameter 1/2

    2017-10-23 16:01:41 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FT8J7R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-a*exp(-x)) on [0,Inf], a = 1/2

    https://purr.purdue.edu/publications/2842

  10. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents -1/2 times a logarithmic factor

    2016-10-21 13:05:28 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FQ9TKW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=-1/2

    https://purr.purdue.edu/publications/2233

  11. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents 1/2 times a logarithmic factor

    2016-10-21 13:06:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79Z92VJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=1/2

    https://purr.purdue.edu/publications/2234

  12. 32-digit values of the first 100 recurrence coefficients for the lower subrange Binet weight function on [0,c], c=1

    2018-01-10 15:48:37 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QF8R2P

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,c], c=1

    https://purr.purdue.edu/publications/2537

  13. 32-digit values of the first 100 recurrence coefficients for the lower symmetric subrange Binet weight function on [-c,c], c=1

    2018-01-10 15:48:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KP80BB

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-c,c], c=1

    https://purr.purdue.edu/publications/2847

  14. 32-digit values of the first 100 recurrence coefficients for the midpoint weight function

    2017-01-20 14:01:08 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z31WN1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|/(exp(2*π*|x|)+1) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2362

  15. 32-digit values of the first 100 recurrence coefficients for the Morse weight function

    2017-01-13 14:04:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7G44N8B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-5*x+6*(exp(-x)-1)] on [0,Inf]

    https://purr.purdue.edu/publications/2347

  16. 32-digit values of the first 100 recurrence coefficients for the Plana weight function

    2017-01-20 13:59:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BC3WH5

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|/(exp(2*π*|x|)-1) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2361

  17. 32-digit values of the first 100 recurrence coefficients for the reciprocal gamma weight function

    2016-11-23 16:40:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7S180GF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=1/gamma(x) on [0,Inf]

    https://purr.purdue.edu/publications/2246

  18. 32-digit values of the first 100 recurrence coefficients for the Schroedinger weight function with exponent mu=5

    2016-12-09 15:55:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QR4V3Z

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^4/16) on [0,Inf], mu=5

    https://purr.purdue.edu/publications/2322

  19. 32-digit values of the first 100 recurrence coefficients for the second-order cardinal B-spline weight function obtained by discretization

    2016-12-01 15:47:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74B2Z9Q

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=phi_m(x) on [0,m], m=2

    https://purr.purdue.edu/publications/2249

  20. 32-digit values of the first 100 recurrence coefficients for the second-order cardinal B-spline weight function obtained from moments

    2016-12-05 18:01:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XG9P4B

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=phi_m(x) on [0,m], m=2

    https://purr.purdue.edu/publications/2303

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).