Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2016-11-22 16:58:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7T151N8

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2238

  2. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*(1-x^3)^(-1/2) on [0,1]

    2016-11-15 21:05:37 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MSG

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = -1/2, b = -1/2, c = 3

    https://purr.purdue.edu/publications/2274

  3. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

    2016-12-05 18:01:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SQ8XDM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2302

  4. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2017-01-10 20:09:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZMR

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2298

  5. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^2 on [0,1]

    2016-10-21 13:28:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72J68T4

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^2 on [0,1], a=-1/2

    https://purr.purdue.edu/publications/2236

  6. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^3 on [0,1]

    2016-11-15 21:06:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XK8CH6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=-1/2, b=3

    https://purr.purdue.edu/publications/2270

  7. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*(1-x^(1/4))^(3/4) on [0,1]

    2017-01-10 20:05:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TR2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 1/2, b = 3/4, c = 1/4

    https://purr.purdue.edu/publications/2272

  8. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

    2016-12-05 18:05:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78P5XHT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

    https://purr.purdue.edu/publications/2304

  9. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2016-11-30 16:51:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JH3J5S

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

    https://purr.purdue.edu/publications/2240

  10. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-.999*x^2)*(1-x^2)]^(-1/2) on [-1,1]

    2016-11-23 19:40:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7N877RQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=.999

    https://purr.purdue.edu/publications/2247

  11. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-x^2/2)*(1-x^2)]^(-1/2) on [-1,1]

    2016-11-22 16:59:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HH6H1D

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=1/2

    https://purr.purdue.edu/publications/2248

  12. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials

    2017-01-10 20:01:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7736NWN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=0

    https://purr.purdue.edu/publications/2260

  13. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent -1/2

    2016-11-10 14:35:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FN145H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2265

  14. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent 1/2

    2017-01-10 20:04:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K935HZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=1/4

    https://purr.purdue.edu/publications/2266

  15. 32-digit values of the first 100 recurrence coefficients for upper subrange Jacobi polynomials

    2016-11-02 18:24:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7VT1Q2N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*(1+x)^b on [c,1], c=0, a=-1/2, b=1/2

    https://purr.purdue.edu/publications/2255

  16. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)

    2014-04-22 11:31:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70Z715M

    32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)

    https://purr.purdue.edu/publications/1491

  17. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,-1/2,32)

    2014-04-22 11:31:45 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SF2T39

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,-1/2,32)

    https://purr.purdue.edu/publications/1498

  18. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,1/2,32)

    2014-04-22 11:31:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7RWJ

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,1/2,32)

    https://purr.purdue.edu/publications/1500

  19. 32-digit values of the first 100 recurrence coefficients, obtained by discretization, for a radiative transfer weight function with parameter c=2/3

    2017-01-13 14:07:19 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CF9N35

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=2/3

    https://purr.purdue.edu/publications/2316

  20. 32-digit values of the first 100 recurrence coefficients, obtained from modified moments, for the Laguerre weight function multiplied by a logarithmically singular function

    2016-12-12 16:06:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7M043CX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2301

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).