32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(-1/2)*log(1/x) on [0,1]
2017-01-10 20:07:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PZ56TN
https://purr.purdue.edu/publications/2293
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(1/2)*log(1/x) on [0,1]
2016-11-22 13:57:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76W981N
https://purr.purdue.edu/publications/2295
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^4)^(1/2) on [0,1]
2016-11-15 20:55:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DN432K
https://purr.purdue.edu/publications/2273
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments
2016-11-22 16:58:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7T151N8
https://purr.purdue.edu/publications/2238
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*(1-x^3)^(-1/2) on [0,1]
2016-11-15 21:05:37 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MSG
https://purr.purdue.edu/publications/2274
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments
2016-12-05 18:01:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SQ8XDM
https://purr.purdue.edu/publications/2302
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments
2017-01-10 20:09:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZMR
https://purr.purdue.edu/publications/2298
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^2 on [0,1]
2016-10-21 13:28:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72J68T4
https://purr.purdue.edu/publications/2236
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^3 on [0,1]
2016-11-15 21:06:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XK8CH6
https://purr.purdue.edu/publications/2270
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*(1-x^(1/4))^(3/4) on [0,1]
2017-01-10 20:05:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TR2
https://purr.purdue.edu/publications/2272
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments
2016-12-05 18:05:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78P5XHT
https://purr.purdue.edu/publications/2304
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments
2016-11-30 16:51:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JH3J5S
https://purr.purdue.edu/publications/2240
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-.999*x^2)*(1-x^2)]^(-1/2) on [-1,1]
2016-11-23 19:40:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7N877RQ
https://purr.purdue.edu/publications/2247
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-x^2/2)*(1-x^2)]^(-1/2) on [-1,1]
2016-11-22 16:59:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HH6H1D
https://purr.purdue.edu/publications/2248
32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials
2017-01-10 20:01:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7736NWN
https://purr.purdue.edu/publications/2260
32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent -1/2
2016-11-10 14:35:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FN145H
https://purr.purdue.edu/publications/2265
32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent 1/2
2017-01-10 20:04:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K935HZ
https://purr.purdue.edu/publications/2266
32-digit values of the first 100 recurrence coefficients for upper subrange Jacobi polynomials
2016-11-02 18:24:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7VT1Q2N
https://purr.purdue.edu/publications/2255
32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)
2014-04-22 11:31:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70Z715M
https://purr.purdue.edu/publications/1491
32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,-1/2,32)
2014-04-22 11:31:45 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SF2T39
https://purr.purdue.edu/publications/1498