Datasets: All

  1. The first 100 recurrence coefficients for a Pollaczek-type weight function with parameters in the interval [1/10,10]

    2017-02-27 13:33:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73R0QV2

    The first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/10, 1/2, 1, 2, . . . , 10

    https://purr.purdue.edu/publications/2393

  2. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=8 multiplied by an exponential function with coefficient a=-8

    2017-02-27 13:31:33 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7W093W1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=8, a=-8

    https://purr.purdue.edu/publications/2414

  3. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=8 multiplied by an exponential function with coefficient a=8

    2017-02-27 13:30:21 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70R9MC1

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=8, a=8

    https://purr.purdue.edu/publications/2413

  4. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=4 multiplied by an exponential function with coefficient a=8

    2017-02-27 13:29:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74J0C39

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=4, a=8

    https://purr.purdue.edu/publications/2412

  5. 32-digit values of the first 100 recurrence coefficients for a Gegenbauer weight function with parameter λ=2 multiplied by an exponential function with coefficient a=8

    2017-02-27 13:28:05 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78913V2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^2)^(λ-1/2)*exp(-a*x^2) on [-1,1], λ=2, a=8

    https://purr.purdue.edu/publications/2411

  6. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponents mu=0, nu=3

    2017-02-27 13:26:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7D21VMV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^μ*exp(-x^ν) on [0,Inf], μ=0, ν=3

    https://purr.purdue.edu/publications/2410

  7. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 3

    2017-02-27 13:25:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HT2M9T

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^μ*exp(-|x|^ν) on [-Inf,Inf], μ=0, ν=3

    https://purr.purdue.edu/publications/2409

  8. 32-digit values of the first 100 recurrence coefficients for a half-range hyperexponential weight function

    2017-02-27 13:24:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JQ0Z1W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-exp(x)) on [0,Inf]

    https://purr.purdue.edu/publications/2399

  9. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 1/10

    2017-02-27 13:22:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z03656

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/10

    https://purr.purdue.edu/publications/2397

  10. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 1/2

    2017-02-27 13:20:19 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72R3PP7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/2

    https://purr.purdue.edu/publications/2396

  11. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 10

    2017-02-27 13:18:48 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76H4FFD

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=10

    https://purr.purdue.edu/publications/2395

  12. 32-digit values of the first 100 recurrence coefficients for a symmetric hyperexponential weight function

    2017-02-14 15:24:26 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KP804N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-exp(|x|)) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2400

  13. 32-digit values of the first 100 recurrence coefficients for the symmetric Laguerre weight function

    2017-02-14 15:21:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QF8QVK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-|x|) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2398

  14. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters a=1/3, b=c=1/2, d=-7/6

    2017-02-14 15:17:26 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7RF5S1T

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=const*x^d*exp(-b/x^a-c*x^a), const=exp(1)/(3*√(2*pi)), a=1/3, b=c=1/2, d=-7/6

    https://purr.purdue.edu/publications/2380

  15. 32-digit values of the first 100 recurrence coefficients for a four-parameter exponential weight function with parameters 1, 1/2, 1/2, -3/2

    2017-02-14 15:13:15 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7W66HSK

    32-digit values of the first 100 recurrence coefficients for the weight function (inverse Gaussian distribution) w(x)=const*x^d*exp(-b/x^a-c*x^a) on [0,Inf], const=exp(1)/√(2*π), a=1, b=c=1/2, d=-3/2

    https://purr.purdue.edu/publications/2379

  16. Squared Abel polynomials

    2017-02-14 15:00:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7RZF

    Matlab routine for the first N recurrence coefficients of squared Abel polynomials

    https://purr.purdue.edu/publications/2377

  17. Modified squared Abel polynomials

    2017-02-14 15:01:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78C9T8V

    Matlab routine for the first N recurrence coefficients of modified squared Abel polynomials

    https://purr.purdue.edu/publications/2378

  18. 32-digit values of the first 100 recurrence coefficients for a Gaussian weight function with parameters 1/2 and -1

    2017-02-03 20:31:06 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7D50JZ8

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-a(x-x0)^2) on [0,Inf], with a=1/2, x0=-1

    https://purr.purdue.edu/publications/2373

  19. 32-digit values of the first 100 recurrence coefficients for a Gaussian weight function with parameters 1/2 and 1

    2017-02-03 20:28:33 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HX19PP

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-a(x-x0)^2) on [0,Inf], with a=1/2, x0=1

    https://purr.purdue.edu/publications/2372

  20. 32-digit values of the first 100 recurrence coefficients for the upper subrange Hermite weight function on [c,Inf], c=√1/2

    2017-02-03 20:27:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NP22FV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x^2) on [c,Inf], c=√1/2

    https://purr.purdue.edu/publications/2376

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).