Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^2 on [0,1]

    2016-10-21 13:28:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72J68T4

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^2 on [0,1], a=-1/2

    https://purr.purdue.edu/publications/2236

  2. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents 1/2 times a logarithmic factor

    2016-10-21 13:06:35 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79Z92VJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=1/2

    https://purr.purdue.edu/publications/2234

  3. 32-digit values of the first 100 recurrence coefficients for the Jacobi weight function on [0,1] with exponents -1/2 times a logarithmic factor

    2016-10-21 13:05:28 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FQ9TKW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a=b=-1/2

    https://purr.purdue.edu/publications/2233

  4. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent 1/2

    2016-11-29 15:04:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KH0K95

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=1/4

    https://purr.purdue.edu/publications/2232

  5. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent -1/2

    2016-11-29 15:05:57 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q81B2B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=-1/4

    https://purr.purdue.edu/publications/2231

  6. 32-digit values of the first 100 recurrence coefficients for an Airy weight function

    2016-10-19 14:36:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V122R6

    32-digit values of the first 100 recurrence coefficients for the (normalized) weight function w(x)=c*x^(-5/6)e^(-x)Ai((3x/2)^(2/3)) on [0,Inf], c=2^(-1/6)*3^(1/6)/pi^(1/2), where Ai is the Airy function

    https://purr.purdue.edu/publications/2031

  7. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent 0

    2016-11-29 15:07:32 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZP443R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=0

    https://purr.purdue.edu/publications/1490

  8. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 4

    2016-11-29 13:20:40 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7765C8X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=4

    https://purr.purdue.edu/publications/1480

  9. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 3

    2016-11-29 13:20:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BZ640B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=3

    https://purr.purdue.edu/publications/1479

  10. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 2

    2016-11-30 16:49:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7GQ6VQ8

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=2

    https://purr.purdue.edu/publications/1478

  11. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein weight function

    2016-11-30 16:48:34 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7MG7MGF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=1

    https://purr.purdue.edu/publications/1476

  12. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 8

    2016-11-29 13:23:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7R78C5Q

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [-Inf,Inf], mu=0, nu=8

    https://purr.purdue.edu/publications/1489

  13. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 4

    2016-11-29 13:21:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7VX0DHD

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [-Inf,Inf], mu=0, nu=4

    https://purr.purdue.edu/publications/1487

  14. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 10

    2016-11-29 13:24:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74F1NPK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [-Inf,Inf], mu=0, nu=10

    https://purr.purdue.edu/publications/1486

  15. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 6

    2016-11-29 13:22:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R70P0X0Q

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [-Inf,Inf], mu=0, nu=6

    https://purr.purdue.edu/publications/1488

  16. 32-digit values of the first 100 recurrence coefficients for an algebraically/logarithmically singular weight function on (0,1)

    2016-10-12 14:27:45 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7862DD9

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=(1-x)^{-1/2}x^{1/2}log(1/x) on (0,1)

    https://purr.purdue.edu/publications/1494

  17. 32-digit values of the first 100 recurrence coefficients for the Theodorus weight function

    2016-11-29 13:54:00 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CZ354Q

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)/(exp(x)-1) on [0,Inf]

    https://purr.purdue.edu/publications/1472

  18. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac weight function

    2016-11-29 13:32:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7HQ3WW3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=1

    https://purr.purdue.edu/publications/1481

  19. Scripts for the Ismail-Letessier-Askey (ILA) monotonicity conjecture for zeros of ultraspherical polynomials

    2016-10-04 15:40:40 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78G8HNQ

    Dataset contains matlab scripts for a paper dealing with the ILA monotonicity property for zeros of ultraspherical polynomials.

    https://purr.purdue.edu/publications/2184

  20. Scripts for a discrete top-down Markov problem in approximation theory

    2016-10-04 13:55:59 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7RX0

    Matlab scripts for a discrete top-down Markov problem in approximation theory

    https://purr.purdue.edu/publications/2149

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).