Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for a square-root-logarithmic weight function

    2016-12-06 19:17:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7NZ85NT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1/x)]^b on [0,1], b=1/2

    https://purr.purdue.edu/publications/2306

  2. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

    2016-12-05 18:01:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7SQ8XDM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2302

  3. 32-digit values of the first 100 recurrence coefficients for the second-order cardinal B-spline weight function obtained from moments

    2016-12-05 18:01:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XG9P4B

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=phi_m(x) on [0,m], m=2

    https://purr.purdue.edu/publications/2303

  4. Gauss quadrature rules

    2016-12-06 18:56:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72805KQ

    Variable-precision Matlab routine for generating the nodes and weights of a Gaussian quadrature rule

    https://purr.purdue.edu/publications/2305

  5. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-.999*x^2)*(1-x^2)]^(-1/2) on [-1,1]

    2016-11-23 19:40:22 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7N877RQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=.999

    https://purr.purdue.edu/publications/2247

  6. 32-digit values of the first 100 recurrence coefficients for a modified Bessel weight function

    2016-11-23 19:39:58 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73F4MKN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=c*K_nu(x) on [0,Inf], c=2cos(nu*pi/2)/pi, nu=1/3

    https://purr.purdue.edu/publications/1475

  7. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2017-01-10 20:09:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZMR

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2298

  8. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(-1/2)*log(1/x) on [0,1]

    2016-11-22 14:05:08 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K64G26

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = -1/2

    https://purr.purdue.edu/publications/2294

  9. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(-1/2)*log(1/x) on [0,1]

    2017-01-10 20:07:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PZ56TN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = -1/2

    https://purr.purdue.edu/publications/2293

  10. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(1/2)*log(1/x) on [0,1]

    2016-11-22 14:08:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TQ5ZHJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 1/2

    https://purr.purdue.edu/publications/2292

  11. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*log(1/x) on [0,1]

    2016-11-22 14:00:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZC80VC

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 0

    https://purr.purdue.edu/publications/2297

  12. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*log(1/x) on [0,1]

    2016-11-22 13:59:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7348HBP

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 0

    https://purr.purdue.edu/publications/2296

  13. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(1/2)*log(1/x) on [0,1]

    2016-11-22 13:57:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76W981N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 1/2

    https://purr.purdue.edu/publications/2295

  14. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^4)^(1/2) on [0,1]

    2016-11-15 20:55:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DN432K

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 0, b = 1/2, c = 4

    https://purr.purdue.edu/publications/2273

  15. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*(1-x^(1/4))^(3/4) on [0,1]

    2017-01-10 20:05:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TR2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 1/2, b = 3/4, c = 1/4

    https://purr.purdue.edu/publications/2272

  16. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*(1-x^3)^(-1/2) on [0,1]

    2016-11-15 21:05:37 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MSG

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = -1/2, b = -1/2, c = 3

    https://purr.purdue.edu/publications/2274

  17. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^3 on [0,1]

    2016-11-15 21:06:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XK8CH6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=-1/2, b=3

    https://purr.purdue.edu/publications/2270

  18. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent 1/2

    2017-01-10 20:04:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K935HZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=1/4

    https://purr.purdue.edu/publications/2266

  19. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent -1/2

    2016-11-10 14:35:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FN145H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2265

  20. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent 1/2

    2016-11-10 14:36:46 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZK5DNK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=1/4

    https://purr.purdue.edu/publications/2262

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).