You may have heard that PURR may be down temporarily this Thursday (10/17) for maintenance. The maintenance is being rescheduled, and we do not expect to have any downtime this week. We will let you know when the maintenance has been rescheduled. close

Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for the lower symmetric subrange Binet weight function on [-c,c], c=1

    2018-01-10 15:48:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KP80BB

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-c,c], c=1

    https://purr.purdue.edu/publications/2847

  2. 32-digit values of the first 100 recurrence coefficients for the lower subrange Binet weight function on [0,c], c=1

    2018-01-10 15:48:37 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QF8R2P

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,c], c=1

    https://purr.purdue.edu/publications/2537

  3. Loading variable-precision recurrence coefficients

    2017-11-02 22:44:24 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7T151VZ

    Loading a text file of variable-precision recurrence coefficients into Matlab symbolic or double-precision arrays

    https://purr.purdue.edu/publications/2271

  4. 32-digit values of the first 100 recurrence coefficients for the upper subrange Binet weight function on [c,Inf], c=1

    2017-10-24 12:00:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CZ35CV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [c,Inf], c=1

    https://purr.purdue.edu/publications/2531

  5. 32-digit values of the first 100 recurrence coefficients for the Binet weight function

    2017-10-24 11:59:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PC30JZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2533

  6. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 10

    2017-10-23 16:05:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72N50FJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=10

    https://purr.purdue.edu/publications/2846

  7. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 8

    2017-10-23 16:04:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76D5R5W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=8

    https://purr.purdue.edu/publications/2845

  8. 32-digit values of the first 100 recurrence coefficients for the half-range squared generalized Binet weight function with parameter 1/2

    2017-10-23 16:01:41 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FT8J7R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-a*exp(-x)) on [0,Inf], a = 1/2

    https://purr.purdue.edu/publications/2842

  9. 32-digit values of the first 100 recurrence coefficients for the half-range squared Binet weight function

    2017-10-23 15:57:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KK98Z2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2841

  10. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Binet weight function with parameter 1/2

    2017-10-23 15:04:28 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QC01NW

    32-digit values of the first 100 recurrence coefficients for the half-range generalized Binet weight function w(x)=-log(1-a*exp(-x)) on [0,Inf], a = 1/2

    https://purr.purdue.edu/publications/2840

  11. 32-digit values of the first 100 recurrence coefficients for the squared generalized Binet weight function with parameter 1/2

    2017-10-23 15:56:41 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V40SC7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-a*exp(-|x|)) on [-Inf,Inf], a = 1/2

    https://purr.purdue.edu/publications/2839

  12. 32-digit values of the first 100 recurrence coefficients for the generalized Binet weight function with parameter 1/2

    2017-10-23 13:09:14 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZW1J3N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-a*exp(-|x|)) on [-Inf,Inf], a = 1/2

    https://purr.purdue.edu/publications/2838

  13. 32-digit values of the first 100 recurrence coefficients for the half-range Binet weight function

    2017-08-14 16:39:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PC30HH

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2538

  14. 32-digit values of the first 100 recurrence coefficients for the square Binet weight function

    2017-08-14 16:43:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KW5D2N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1-exp(-|x|))]^2 on [-Inf, Inf]

    https://purr.purdue.edu/publications/2593

  15. 32-digit values of the first 200 recurrence coefficients for the weight function w(x)=[log(1/x)]^2 on [0,1]

    2017-08-14 16:36:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7W95769

    32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=0, b=2

    https://purr.purdue.edu/publications/2269

  16. 32-digit values of the first 100 recurrence coefficients for a Binet-like weight function

    2017-05-31 12:22:27 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73B5X5B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1+exp(-abs(x))) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2521

  17. 32-digit values of the first 100 recurrence coefficients for a half-range Binet-like weight function

    2017-05-24 19:24:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7736NX3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1+exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2522

  18. 32-digit values of the first 64 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 1

    2017-05-10 19:23:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72J68W1

    32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=1

    https://purr.purdue.edu/publications/2494

  19. 32-digit values of the first 63 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 3

    2017-05-10 19:22:50 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79Z92XF

    32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=3

    https://purr.purdue.edu/publications/2495

  20. 32-digit values of the first 62 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 5

    2017-05-10 19:22:12 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FQ9TMB

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=5

    https://purr.purdue.edu/publications/2496

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).