Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

    2017-01-10 20:09:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZMR

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

    https://purr.purdue.edu/publications/2298

  2. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(-1/2)*log(1/x) on [0,1]

    2016-11-22 14:05:08 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K64G26

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = -1/2

    https://purr.purdue.edu/publications/2294

  3. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(-1/2)*log(1/x) on [0,1]

    2017-01-10 20:07:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PZ56TN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = -1/2

    https://purr.purdue.edu/publications/2293

  4. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(1/2)*log(1/x) on [0,1]

    2016-11-22 14:08:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TQ5ZHJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 1/2

    https://purr.purdue.edu/publications/2292

  5. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*log(1/x) on [0,1]

    2016-11-22 14:00:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZC80VC

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 0

    https://purr.purdue.edu/publications/2297

  6. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*log(1/x) on [0,1]

    2016-11-22 13:59:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7348HBP

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 0

    https://purr.purdue.edu/publications/2296

  7. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(1/2)*log(1/x) on [0,1]

    2016-11-22 13:57:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76W981N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 1/2

    https://purr.purdue.edu/publications/2295

  8. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^4)^(1/2) on [0,1]

    2016-11-15 20:55:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DN432K

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 0, b = 1/2, c = 4

    https://purr.purdue.edu/publications/2273

  9. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*(1-x^(1/4))^(3/4) on [0,1]

    2017-01-10 20:05:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TR2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 1/2, b = 3/4, c = 1/4

    https://purr.purdue.edu/publications/2272

  10. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*(1-x^3)^(-1/2) on [0,1]

    2016-11-15 21:05:37 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MSG

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = -1/2, b = -1/2, c = 3

    https://purr.purdue.edu/publications/2274

  11. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^3 on [0,1]

    2016-11-15 21:06:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XK8CH6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=-1/2, b=3

    https://purr.purdue.edu/publications/2270

  12. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent 1/2

    2017-01-10 20:04:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K935HZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=1/4

    https://purr.purdue.edu/publications/2266

  13. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent -1/2

    2016-11-10 14:35:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FN145H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2265

  14. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent 1/2

    2016-11-10 14:36:46 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZK5DNK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=1/4

    https://purr.purdue.edu/publications/2262

  15. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent -1/2

    2017-01-10 19:58:17 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q23X6V

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2263

  16. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent 1/2

    2016-11-10 14:41:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TT4NXV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=1/4

    https://purr.purdue.edu/publications/2264

  17. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent -1/2

    2017-01-10 20:02:55 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73B5X4W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2261

  18. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials

    2017-01-10 20:01:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7736NWN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=0

    https://purr.purdue.edu/publications/2260

  19. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials

    2016-11-08 18:47:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BV7DKM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=0

    https://purr.purdue.edu/publications/2259

  20. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials

    2016-11-22 13:56:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7GH9FX2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=0

    https://purr.purdue.edu/publications/2257

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).