## Datasets: All

1. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

2017-01-10 20:09:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZMR

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

https://purr.purdue.edu/publications/2298

2. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(-1/2)*log(1/x) on [0,1]

2016-11-22 14:05:08 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K64G26

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = -1/2

https://purr.purdue.edu/publications/2294

3. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(-1/2)*log(1/x) on [0,1]

2017-01-10 20:07:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PZ56TN

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = -1/2

https://purr.purdue.edu/publications/2293

4. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(1/2)*log(1/x) on [0,1]

2016-11-22 14:08:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TQ5ZHJ

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 1/2

https://purr.purdue.edu/publications/2292

5. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*log(1/x) on [0,1]

2016-11-22 14:00:53 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZC80VC

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 0

https://purr.purdue.edu/publications/2297

6. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*log(1/x) on [0,1]

2016-11-22 13:59:04 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7348HBP

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 0

https://purr.purdue.edu/publications/2296

7. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(1/2)*log(1/x) on [0,1]

2016-11-22 13:57:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76W981N

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 1/2

https://purr.purdue.edu/publications/2295

8. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^4)^(1/2) on [0,1]

2016-11-15 20:55:01 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DN432K

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 0, b = 1/2, c = 4

https://purr.purdue.edu/publications/2273

9. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*(1-x^(1/4))^(3/4) on [0,1]

2017-01-10 20:05:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TR2

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 1/2, b = 3/4, c = 1/4

https://purr.purdue.edu/publications/2272

10. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*(1-x^3)^(-1/2) on [0,1]

2016-11-15 21:05:37 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MSG

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = -1/2, b = -1/2, c = 3

https://purr.purdue.edu/publications/2274

11. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^3 on [0,1]

2016-11-15 21:06:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7XK8CH6

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=-1/2, b=3

https://purr.purdue.edu/publications/2270

12. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent 1/2

2017-01-10 20:04:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K935HZ

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=1/4

https://purr.purdue.edu/publications/2266

13. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent -1/2

2016-11-10 14:35:49 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FN145H

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=-1/4

https://purr.purdue.edu/publications/2265

14. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent 1/2

2016-11-10 14:36:46 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZK5DNK

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=1/4

https://purr.purdue.edu/publications/2262

15. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent -1/2

2017-01-10 19:58:17 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Q23X6V

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=-1/4

https://purr.purdue.edu/publications/2263

16. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent 1/2

2016-11-10 14:41:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TT4NXV

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=1/4

https://purr.purdue.edu/publications/2264

17. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent -1/2

2017-01-10 20:02:55 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R73B5X4W

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=-1/4

https://purr.purdue.edu/publications/2261

18. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials

2017-01-10 20:01:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7736NWN

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=0

https://purr.purdue.edu/publications/2260

19. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials

2016-11-08 18:47:11 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BV7DKM

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=0

https://purr.purdue.edu/publications/2259

20. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials

2016-11-22 13:56:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7GH9FX2

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=0

https://purr.purdue.edu/publications/2257

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).