Datasets: All

  1. Orthogonal polynomials relative to a generalized Marchenko–Pastur measure

    2020-07-30 18:53:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/7BZN-GM13

    A set of MATLAB scripts related to orthogonal polynomials relative to a generalized Marchenko–Pastur measure

    https://purr.purdue.edu/publications/3544

  2. 32-digit values of the first 100 recurrence coefficients for the lower symmetric subrange Binet weight function on [-c,c], c=1

    2018-01-10 15:48:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KP80BB

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-c,c], c=1

    https://purr.purdue.edu/publications/2847

  3. 32-digit values of the first 100 recurrence coefficients for the lower subrange Binet weight function on [0,c], c=1

    2018-01-10 15:48:37 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QF8R2P

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [0,c], c=1

    https://purr.purdue.edu/publications/2537

  4. Loading variable-precision recurrence coefficients

    2017-11-02 22:44:24 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7T151VZ

    Loading a text file of variable-precision recurrence coefficients into Matlab symbolic or double-precision arrays

    https://purr.purdue.edu/publications/2271

  5. 32-digit values of the first 100 recurrence coefficients for the upper subrange Binet weight function on [c,Inf], c=1

    2017-10-24 12:00:29 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7CZ35CV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [c,Inf], c=1

    https://purr.purdue.edu/publications/2531

  6. 32-digit values of the first 100 recurrence coefficients for the Binet weight function

    2017-10-24 11:59:42 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PC30JZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2533

  7. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 10

    2017-10-23 16:05:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R72N50FJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=10

    https://purr.purdue.edu/publications/2846

  8. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 8

    2017-10-23 16:04:43 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76D5R5W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=8

    https://purr.purdue.edu/publications/2845

  9. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponent 6

    2017-10-23 16:04:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7B56GW6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=6

    https://purr.purdue.edu/publications/2844

  10. 32-digit values of the first 100 recurrence coefficients for the half-range squared generalized Binet weight function with parameter 1/2

    2017-10-23 16:01:41 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7FT8J7R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-a*exp(-x)) on [0,Inf], a = 1/2

    https://purr.purdue.edu/publications/2842

  11. 32-digit values of the first 100 recurrence coefficients for the half-range squared Binet weight function

    2017-10-23 15:57:20 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7KK98Z2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2841

  12. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Binet weight function with parameter 1/2

    2017-10-23 15:04:28 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QC01NW

    32-digit values of the first 100 recurrence coefficients for the half-range generalized Binet weight function w(x)=-log(1-a*exp(-x)) on [0,Inf], a = 1/2

    https://purr.purdue.edu/publications/2840

  13. 32-digit values of the first 100 recurrence coefficients for the squared generalized Binet weight function with parameter 1/2

    2017-10-23 15:56:41 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7V40SC7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-a*exp(-|x|)) on [-Inf,Inf], a = 1/2

    https://purr.purdue.edu/publications/2839

  14. OPQ: A Matlab suite of programs for generating orthogonal polynomials and related quadrature rules

    2017-03-29 14:22:17 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7959FHP

    This is a set of Matlab codes and data files for generating orthogonal polynomials and related quadrature rules.

    https://purr.purdue.edu/publications/1582

  15. 32-digit values of the first 100 recurrence coefficients for the half-range generalized Hermite weight function with exponent 0

    2016-11-29 15:07:32 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7ZP443R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=0

    https://purr.purdue.edu/publications/1490

  16. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 4

    2016-11-29 13:20:40 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7765C8X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=4

    https://purr.purdue.edu/publications/1480

  17. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 3

    2016-11-29 13:20:09 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BZ640B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=3

    https://purr.purdue.edu/publications/1479

  18. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 2

    2016-11-30 16:49:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7GQ6VQ8

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=2

    https://purr.purdue.edu/publications/1478

  19. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein weight function

    2016-11-30 16:48:34 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7MG7MGF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=1

    https://purr.purdue.edu/publications/1476

  20. 32-digit values of the first 100 recurrence coefficients for the Freud weight function with exponent 8

    2016-11-29 13:23:13 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7R78C5Q

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [-Inf,Inf], mu=0, nu=8

    https://purr.purdue.edu/publications/1489

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).