Datasets: All

  1. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.005

    2017-01-13 13:53:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R74T6GBQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.005

    https://purr.purdue.edu/publications/2346

  2. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.001

    2017-01-13 13:51:54 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R78K772F

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.001

    https://purr.purdue.edu/publications/2345

  3. 32-digit values of the first 100 recurrence coefficients for the half-range bimodal weight function with parameter ε=.1

    2017-01-13 13:50:07 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7DB7ZTT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(x^2)*exp[-(x^2-1)^2/(4*ε)] on [0,Inf], ε=.1

    https://purr.purdue.edu/publications/2343

  4. Meixner-Pollaczek polynomials

    2016-12-15 20:06:16 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R75T3HG3

    Matlab routine for the first N recurrence coefficients of Meixner-Pollaczek polynomials

    https://purr.purdue.edu/publications/2334

  5. Generalized Hermite polynomials

    2016-12-15 13:56:08 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R79K4878

    Matlab routine for the first N recurrence coefficients of generalized Hermite polynomials

    https://purr.purdue.edu/publications/2333

  6. Generalized Laguerre polynomials

    2016-12-15 20:03:31 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7K07280

    Matlab routines for the first N recurrence coefficients of generalized Laguerre polynomials

    https://purr.purdue.edu/publications/2332

  7. Jacobi polynomials

    2016-12-15 20:02:25 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7PR7SZ5

    Matlab routines for the first N recurrence coefficients of Jacobi polynomials

    https://purr.purdue.edu/publications/2331

  8. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.001

    2017-01-03 15:19:36 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7TH8JPW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.001

    https://purr.purdue.edu/publications/2330

  9. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.005

    2017-01-03 15:18:51 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7Z899DM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.005

    https://purr.purdue.edu/publications/2329

  10. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.02

    2017-01-03 15:19:10 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7319SWH

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.02

    https://purr.purdue.edu/publications/2328

  11. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.1

    2017-01-03 15:17:56 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R76T0JNX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.1

    https://purr.purdue.edu/publications/2327

  12. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=1

    2017-01-03 15:20:03 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7BK19B6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=1

    https://purr.purdue.edu/publications/2326

  13. Code and Dataset for Pattern Recognition Benchmarks

    2016-12-12 19:21:33 | Datasets | Contributor(s): Jonas Hepp, Yellamraju Tarun, Mireille Boutin | doi:10.4231/R7G73BPN

    This code computed a sequence of bounds for the error rate of a pattern recognition method. The bounds correspond to the error rate that one would expect to achieve by simply selecting features at random and thresholding the feature (TARP) approach.

    https://purr.purdue.edu/publications/2030

  14. 32-digit values of the first 100 recurrence coefficients, obtained from modified moments, for the Laguerre weight function multiplied by a logarithmically singular function

    2016-12-12 16:06:52 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7M043CX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2301

  15. 32-digit values of the first 100 recurrence coefficients for the Schroedinger weight function with exponent mu=5

    2016-12-09 15:55:18 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7QR4V3Z

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^4/16) on [0,Inf], mu=5

    https://purr.purdue.edu/publications/2322

  16. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac-type weight function with exponent r=4

    2016-12-09 14:47:33 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R708639Z

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=4

    https://purr.purdue.edu/publications/2320

  17. 32-digit values of the first 100 recurrence coefficients for the half-range Freud weight function with exponents mu=0, nu=4

    2016-12-09 14:38:17 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7416V2R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^mu*exp(-x^nu) on [0,Inf], mu=0, nu=4

    https://purr.purdue.edu/publications/2321

  18. 32-digit values of the first 100 recurrence coefficients for the Fermi-Dirac-type weight function with exponent r=2

    2016-12-09 14:37:41 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R77S7KR9

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=[1/(exp(x)+1)]^r on [0,Inf], r=2

    https://purr.purdue.edu/publications/2318

  19. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/logarithmic singularity with exponent a=1/2 and power b=3

    2016-12-08 13:52:47 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7H70CSK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=1/2, b=3

    https://purr.purdue.edu/publications/2314

  20. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=2/3

    2016-12-08 13:26:23 | Datasets | Contributor(s): Walter Gautschi | doi:10.4231/R7N014H9

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=2/3

    https://purr.purdue.edu/publications/2315

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).